S2: Improved parameterisations and numerics in climate models

Schematic of processes assessed in S2.

Principal investigators: Dr. Johann Jungclaus (Max Planck Institute for Meteorology), Prof. Carsten Eden (Universität Hamburg), Dr. Marco Giorgetta (Max Planck Institute for Meteorology), Prof. Armin Iske (Universität Hamburg), Dr. Sergey Danilov (Alfred Wegener Institute for Polar and Marine Research)

The project aims to implement new parameterisations and numerical algorithms designed to improve the energetic consistency, and elaborated in the framework of this CRC, in the ocean components of the new generation of Earth System Models that are presently developed in Germany. It will also support the development and implementation of new atmospheric parameterisations. The project will interact with other projects of this CRC providing a framework for the synthesis of the collaborative efforts and serve, together with S1, as a metric for its success.

The AWI climate model

The model consists of the FESOM ocean model coupled to the ECHAM6.3 atmosphere model. Coupled configurations with various ocean grids are available.

  • FESOM offers multi-resolution functionality
  • FESOM works on arbitrary triangular meshes and allows refinements without nesting in the areas of interest
  • ECHAM6-FESOM allows climate studies with a multi-scale ocean

Advanced FESOM configurations allow grids to be locally eddy resolving to simulate variability adequately where it is observed.

Resolution in CORE-II-forced locally eddy-resolving FESOM run.
Simulated velocities (log |u| @ 50m) in CORE-II-forced locally eddy-resolving FESOM run.
Local refinement improves representation of ocean geometry in climate studies.
 

The ICON model system

The system consists of newly developed sub-systems for the atmosphere (ICON-a) and the ocean (ICON-o).

  • ICON-a features non-hydrostatic dynamical core in grid point space.
  • ICON-a implemented at the German Weather Service for regional and global weather forecasting.
  • ICON-a applied at MPI-M using different physics packages at resolutions from 2.5 to 160 km.
  • ICON-a LES simulations at 150m resolution in HD(CP)² project
  • ICON-o based on similar grid structure using mimetic discretisation
  • ICON-o applied at MPI-M at resolutions from 10 to 160 km

ICON-o and ICON-a are coupled by the YAC coupler to form the new Max Planck Earth System Model MPI-ESM-2.

Velocities (log |u| @ 200m) in OMIP-forced ICON-o simulations at 10km resolution.
Streamlines and velocities in the Alps from an HD(CP)² ICON-LES simulation.

Reports from the scientific front

Implementing new parameterizations and algorithms

(by Patrick Scholz)

I’m Patrick Scholz, Post Doc at Alfred Wegener Institute and work together with Sergey Danilov at Research area S2: “Improved parameterizations and numerics in climate models”. Aim of this project part is to implement new parameterizations and algorithms to improve the energetic consistency in the ocean component of climate models. In particular I will work with the new Finite Volume Sea Ice Ocean Model (FESOM2.0) and start there to implement a new vertical coordinate frame (Arbitrary Lagrangian Eulerian, ALE), based on vertical mesh motion, that has the potential to reduce unwanted spurious mixing effects in the ocean. ALE also allows to combine different versions of vertical coordinates in a single ocean setup, which will also help to broaden the functionality of the model. Further, we will implement new parameterizations of overflows, improved numerical transport algorithms and an energetically consistent parameterization of vertical mixing.

Working with IDEMIX

(by Hannah Kleppin)

I'm Hannah Kleppin, I recently finished my PhD at the University of Copenhagen under the supervision of Markus Jochum. Until the end of this year I work in the TRR181 in subproject S2 “Improved parameterizations and numerics in climate models”, together with Johann Jungclaus and Carsten Eden. The main goal of subproject S – Synthesis with climate models as metric – is to test parameterizations that are developed in the other subprojects. I will work on implementing IDEMIX – a closure for internal gravity wave mixing in the ocean -  into ICON (MPI) and FESOM (AWI). We will develop a library that simulates the vertical part of IDEMIX independently from the calling GCM (in this case ICON or FESOM). In the long run other vertical mixing parameterizations will be implemented in this library, so that the effects of the different parameterizations on  e.g. biases in the different GCMs can be readily tested and compared.

Open Positions

  • 1 Postdoc in Hamburg