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Balanced and unbalanced regime in the ocean
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Generation of internal gravity waves




Generation of internal gravity waves

» Energy source of internal gravity waves
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Energy pathways—what’s missing?
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Energy pathways—what’s missing?
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Model setup: Idealized, baroclinically unstable

SETUP:

» f-plane

» Double periodic domain
—excludes boundary instabilities

240x 240 Z

FORCING:

» Large scales— Restoring of the

H=200m -
zonal mean flow and buoyancy

towards the initial state 80 levels

DISSIPATION:

» Small scales— Biharmonic friction and vertical friction
» Large scales— Linear drag acting on the zonal mean flow



Different dynamical regimes

» Stratification—Richardson number (Ri)
» Rotation—Rossby nhumber (Ro)

vertical density stratification

Ri

vertical shear of horizontal velocity

» Weakly stratified » Strongly stratified

Ri

Ri = Ri>>1

o) Ageostrophic Quasi-geostrophic



Different dynamical regimes

» Stratification—Richardson number (Ri)
» Rotation—Rossby nhumber (Ro)

vertical density stratification flow frequency
Ri = Ro =
vertical shear of horizontal velocity frequency of rotation
» Weakly stratified - » Strongly stratified
/ R
Ri=0(1 : : . Ri>>1
() Ageostrophic Quasi-geostrophic

Ro<1 / Ro<<1
R



Different dynamical regimes

Ri=0(1) Ri Ri>>1

Ageostrophic Quasi-geostrophic

» Ri sets the background state in the model.

» Hence, the flow dynamics: from Ageostrophic
(Ri = O(1)) to Quasi-geostrophic (Ri >> 1).

» Different flow simulations with
Ri=3, 13,327, and 917



Different dynamical regimes
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Different dynamical regimes

Ri=0(1) Ri Ri>>1

Ageostrophic Quasi-geostrophic
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Disentangling unbalanced and balanced regimes
O’ mighty ocean!

Thou singeth tale of tangled waves

Waves thee maketh of all scales

Speaketh but, O’ mighty ocean!

In thy wavy world of fast and slow

How doth thee split up fast from slow?



Disentangling unbalanced and balanced regimes
O’ mighty ocean!

Thou singeth tale of tangled waves

Waves thee maketh of all scales

Speaketh but, O’ mighty ocean!

In thy wavy world of fast and slow

How doth thee split up fast from slow?

Initialization
» treat the initial data
to eliminate gravity waves

Non-linear initialization
by Machenhauer (1977)




Decomposition of modes
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Decomposition of modes
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Decomposition of modes
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k2 —I2 0 component component
Eigenvalues W = 0 W = \/f2 + C%k%
0 0
Eigenvectors q P q- p*
Projection Z qO ' po G+ = q— -p-




Decomposition of modes

o ;} _;f :’; Balanced Unbalanced
k2~ 0 component component
Eigenvalues W’ =0 W = \/f2 -+ c%k%

0 ,,0 + .t
Eigenvectors q P q P
Projection P = qO °p0 G+ = q— -p-
rp =% -x o =4G* . 1
Decomposed
modes

€A1 = '/I;B —|— '/'BG Fourier space
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Non-linear decomposition

~
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Non-linear
balanced mode

Machenhauer G - k=0
(1977) = %ﬁ:i(ﬁf )1 N|E)

Leith (1980): |23 = Zp+i(ZL-9) -4 - N (xp)
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Quasi-geostrophic balanced state



Non-linear decomposition
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Non-linear
balanced mode
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Dissipation

Ri  Unbalanced component » The unbalanced mode shows a
(non-linear) preferred dissipation through
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Dissipation

Gravity waves dissipate predominantly through
small-scale dissipation for all Ri.
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Dissipation

Ageostrophic baroclinic instability can generate internal
gravity waves during the downscale energy transfer.

Gravity waves dissipate predominantly through
small-scale dissipation for all Ri.

Ri  Unbalanced component » The unbalanced mode shows a
(non-linear) preferred dissipation through

. small-scale dissipation for all Ri
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Gravity wave emission: power law
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Chouksey, Eden, and Briiggemann, 2018: Internal gravity wave
emission in dlfferent dynamical regimes (under revision in JPO)



Gravity wave emission: power law

The kinetic energy tied to the unbalanced mode scales
with Rossby number as Ro?.
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Chouksey, Eden, and Briiggemann, 201 8: Internal gravity wave
emission in different dynamical regimes (under revision in JPO)



Wave emission: theoretical results

Kinetic equation for wave energy:
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» Initially vanishing gravity waves (E*)

» Initially vanishing Rossby waves (E®)

Eden, Chouksey, and Olbers, 201 8: Mixed Rossby-gravity wave-wave interactions.
(submltted)



Wave emission: theoretical evaluation

(Balanced)
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Eden, Chouksey, and Olbers, 20 | 8: Mixed Rossby-gravity wave-wave interactions.

(submitted)
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Wave emission: theoretical evaluation

Rossby waves Gravity waves
(Balanced) (Unbalanced)
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c) Cumulative net energy gain x 10°
/\/m » The energy transfer related to the
: A spontaneous emission of gravity
ol | waves scales as the square of the
Rossby number (Ro?).

— V\/— »in agreement with numerical

R I N experiments

Eden, Chouksey, and Olbers, 20 | 8: Mixed Rossby-gravity wave-wave interactions.
(submitted)



Conclusions

d Gravity wave activity is much more
pronounced for a Ri = O(1) regime
than for a Ri >>1 regime, identified -.
using non-linear initialization
technique as a diagnostic.
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