Downscale energy transfer from balanced to unbalanced regime

Manita Chouksey

Carsten Eden, Nils Brüggemann, Dirk Olbers

April 4th, 2018 Hamburg

Balanced and unbalanced regime in the ocean

Generation of internal gravity waves

Generation of internal gravity waves

Energy pathways—what's missing?

Energy pathways—what's missing?

Model setup: Idealized, baroclinically unstable

SETUP:

▶ f-plane

Double periodic domain
–excludes boundary instabilities

FORCING:

 Large scales— Restoring of the zonal mean flow and buoyancy towards the initial state

$\begin{array}{c} 240 \times 240 & z \\ \hline y \\ \hline H = 200 m \end{array} \\ \hline 80 \text{ levels} \end{array}$

DISSIPATION:

- Small scales— Biharmonic friction and vertical friction
- Large scales— Linear drag acting on the zonal mean flow

Different dynamical regimes

- Stratification—Richardson number (Ri)
- Rotation—Rossby number (Ro)

Different dynamical regimes

- Stratification—Richardson number (Ri)
- Rotation—Rossby number (Ro)

- Ri sets the background state in the model.
- Hence, the flow dynamics: from Ageostrophic (Ri = O(1)) to Quasi-geostrophic (Ri >> 1).
- Different flow simulations with Ri = 3, 13, 327, and 917

Disentangling unbalanced and balanced regimes

O' mighty ocean!

Thou singeth tale of tangled waves Waves thee maketh of all scales

Speaketh but, O' mighty ocean!

In thy wavy world of fast and slow How doth thee split up fast from slow?

Disentangling unbalanced and balanced regimes

O' mighty ocean!

Thou singeth tale of tangled waves Waves thee maketh of all scales

Speaketh but, O' mighty ocean!

In thy wavy world of fast and slow How doth thee split up fast from slow?

Initialization

treat the initial data
to eliminate gravity waves

Non-linear initialization by Machenhauer (1977)

Linearized equations

Linearized equations

Non-linear decomposition

$\mathscr{L} = \begin{pmatrix} 0 & -if & -k \\ if & 0 & -l \\ -kc_n^2 & -lc_n^2 & 0 \end{pmatrix}$	Balanced component	Unbalanced component
Eigenvalues	$\omega^0 = 0$	$\omega^{\pm} = \pm \sqrt{f^2 + c_n^2 k_h^2}$
Eigenvectors	$oldsymbol{q}^0$ $oldsymbol{p}^0$	$oldsymbol{q}^{\pm}$ $oldsymbol{p}^{\pm}$
Projection	$\mathscr{B} = oldsymbol{q}^0 \cdot oldsymbol{p}^0$	$\mathscr{G}^{\pm} = q^{\pm} \cdot p^{\pm}$
	$ ilde{oldsymbol{x}}_B = \mathscr{B} \cdot ilde{oldsymbol{x}}$	$ ilde{x}_G = \mathscr{G}^{{ t t}} \cdot ilde{x}$
Decomposed		
modes	$ ilde{oldsymbol{x}} = ilde{oldsymbol{x}}_B$	$+ ilde{x}_G$ Fourier space

Linear decomposition

 $\mathcal{N}=0$

Full component Balanced component

Unbalanced component

Non-linear decomposition

 $\mathcal{N} \neq 0$

$$\partial_t \tilde{\boldsymbol{x}}_B = \tilde{\mathscr{N}}(\boldsymbol{x}_B) \neq 0$$

Machenhauer (1977):

$$\mathscr{G} \cdot \partial_{t} \tilde{x}_{B}^{*} = 0 \qquad \text{balanced mode} \\ \neq \mathscr{G} \left[\tilde{x}_{B}^{*} \right] = i(\mathscr{L} \cdot \mathscr{G})^{-1} \cdot \mathscr{G} \cdot \tilde{\mathscr{N}} \left[\tilde{x}_{B}^{*} \right]$$

$$\tilde{\boldsymbol{x}}_{B}^{\star} = \tilde{\boldsymbol{x}}_{B} + i(\mathscr{L} \cdot \mathscr{G})^{-1} \cdot \mathscr{G} \cdot \tilde{\mathscr{N}}(\boldsymbol{x}_{B})$$

Quasi-geostrophic balanced state

Non-linear decomposition

 $\mathcal{N} \neq 0$

 $\mathscr{G} \cdot \partial_t \tilde{x}_B^* = 0$

$$\partial_t \tilde{\boldsymbol{x}}_B = \tilde{\mathscr{N}}(\boldsymbol{x}_B) \neq 0$$

Machenhauer (1977):

$$\rightarrow \mathscr{G} \quad \tilde{x}_{B}^{\star} = i(\mathscr{L} \cdot \mathscr{G})^{-1} \cdot \mathscr{G} \cdot \tilde{\mathscr{N}} (\tilde{x}_{B}^{\star})$$

$$\tilde{\boldsymbol{x}}_{B}^{\star} = \tilde{\boldsymbol{x}}_{B} + i(\mathscr{L} \cdot \mathscr{G})^{-1} \cdot \mathscr{G} \cdot \tilde{\mathscr{N}}(\boldsymbol{x}_{B})$$

Quasi-geostrophic balanced state

Non-linear unbalanced	= Full state vector —	Non-linear balanced
mode		mode

Non-linear decomposition

Unbalanced

Dissipation

Ri Unbalanced component (non-linear)

 The unbalanced mode shows a preferred dissipation through small-scale dissipation for all Ri

• higher for
$$\mathbf{Ri} = O(1)$$

Small-scale dissipation

Large-scale dissipation

Dissipation

Gravity waves dissipate predominantly through small-scale dissipation for all Ri.

Ri Unbalanced component (non-linear)

The unbalanced mode shows a preferred dissipation through small-scale dissipation for all Ri

• higher for
$$\mathbf{Ri} = O(1)$$

Small-scale dissipation

Large-scale dissipation

Dissipation

Ageostrophic baroclinic instability can generate internal gravity waves during the downscale energy transfer.

Gravity waves dissipate predominantly through small-scale dissipation for all Ri.

Ri Unbalanced component (non-linear)

 The unbalanced mode shows a preferred dissipation through small-scale dissipation for all Ri

• higher for
$$\mathbf{Ri} = O(1)$$

Small-scale dissipation

Large-scale dissipation

Gravity wave emission: power law

Chouksey, Eden, and Brüggemann, 2018: Internal gravity wave emission in different dynamical regimes (under revision in JPO)

Gravity wave emission: power law

The kinetic energy tied to the unbalanced mode scales with Rossby number as Ro².

Chouksey, Eden, and Brüggemann, 2018: Internal gravity wave emission in different dynamical regimes (under revision in JPO)

Wave emission: theoretical results

Kinetic equation for wave energy:

$$\partial_{t} E_{0}^{s_{0}} = \frac{4}{n_{0}^{s_{0}}} \int d\mathbf{k}_{1} \sum_{s_{1},s_{2}} C_{\mathbf{k}_{0},\mathbf{k}_{1},\mathbf{k}_{2}}^{s_{0},s_{1},s_{2}} \left(n_{1}^{s_{1}} n_{2}^{s_{2}} E_{1}^{s_{1}} E_{2}^{s_{2}} C_{\mathbf{k}_{0},\mathbf{k}_{2},\mathbf{k}_{1}}^{s_{0},s_{2},s_{1}} \right)^{*} \\ -n_{0}^{s_{0}} n_{1}^{s} E_{0}^{s_{0}} E_{1}^{s_{1}} C_{\mathbf{k}_{2},-\mathbf{k}_{1},\mathbf{k}_{0}}^{s_{2},-s_{1},s_{0}} - n_{0}^{s_{0}} n_{2}^{s_{2}} E_{0}^{s_{0}} E_{2}^{s_{2}} C_{\mathbf{k}_{1},-\mathbf{k}_{2},\mathbf{k}_{0}}^{s_{1},-s_{2},s_{0}} \right) \Delta(\omega_{1}^{s_{1}} + \omega_{2}^{s_{2}} - \omega_{0}^{s_{0}}) \\ -4E_{0}^{s_{0}} \int d\mathbf{k}_{1} \sum_{s_{1}=\pm} n_{1}^{s_{1}} E_{1}^{s_{1}} \sum_{s_{2}=\pm} C_{\mathbf{k}_{0},\mathbf{k}_{0},0}^{s_{0},s_{0},s_{2}} C_{0,\mathbf{k}_{1},-\mathbf{k}_{1}}^{s_{2},s_{1},-s_{1}} \Delta(s_{2}f) + c.c.$$

s = ±,0
▶ Initially vanishing gravity waves (E[±])
▶ Initially vanishing Rossby waves (E⁰)

Eden, Chouksey, and Olbers, 2018: Mixed Rossby-gravity wave-wave interactions. (submitted)

Wave emission: theoretical evaluation

Eden, Chouksey, and Olbers, 2018: Mixed Rossby-gravity wave-wave interactions. (submitted)

Wave emission: theoretical evaluation

1.00

0.75

0.50

0.25

0.00

-0.25

-0.50

-0.75

-1.00

Eden, Chouksey, and Olbers, 2018: Mixed Rossby-gravity wave-wave interactions. (submitted)

Conclusions

- □ Gravity wave activity is much more pronounced for a Ri = O(1) regime than for a Ri >>1 regime, identified using non-linear initialization technique as a diagnostic.
- Gravity waves dissipate predominantly through small-scale dissipation for all Ri and hence during the downscale energy transfer.

The kinetic energy tied to gravity wave emission scales with Rossby number as Ro², in agreement with theoretical results.

