Stochastic subgrid-scale parameterization for one-dimensional shallow water dynamics using stochastic mode reduction

Stamen I. Dolaptchiev1
with Matthias Zacharuk1, Ulrich Achatz1 and Ilya Timofeyev2

1University of Frankfurt

2University of Houston

April 2018, Hamburg
Outline

1. Motivation
2. Stochastic mode reduction
3. SGS parameterization for the shallow water equations
1 Motivation

2 Stochastic mode reduction

3 SGS parameterization for the shallow water equations
Motivation

Stochastic parameterizations are applied (e.g. Palmer 2001, Berner et al, 2016) in order to:

- reduce systematic model error
- represent uncertainty in weather and climate predictions
- trigger regime transitions
- ...

Common approach in comprehensive climate and weather models includes

- stochastically perturbed physical parameterization tendencies (Buizza et al. 1999, Palmer et al. 2009)
- stochastic kinetic energy back-scatter (Shutts 2005, Berner et al. 2009)
Bias in outgoing longwave radiation (DJF) for a simulation without (left) and with (right) stochastic parameterization (SPPT & SPBS) in the ECMWF seasonal forecast system. Hindcasts for the period 1981-2010. From Weisheimer et al. 2014
Some open issues with (stochastic) parameterizations

- empirical tuning
- a posteriori nature of some parameterizations
- scale-aware parameterizations

Derivation of stochastic subgrid-scale parameterization from first principles

- maximum entropy principle, (e.g. Verkley & Severijns 20014, Verkley et al. 2015)
- averaging method (e.g. Hasselmann 1976; Imkeller & Storch 2001; Arnold et al. 2003, Monahan & Culina 2011): require time scale separation
- homogenization or stochastic mode reduction (e.g. Majda, Timoveyev & Vanden Eijnden 2001, 2002; Franzke & Majda 2006; Franzke 2013): require time scale separation
Local stochastic parameterization for the Burgers equation

Energy spectra for: DNS, bare truncation model (BRT), Smagorinsky SGS model (SMG) and reduced stochastic model with stochastic mode reduction parameterization (RSM).

From Dolaptchiev et al. 2013
Outline

1. Motivation
2. Stochastic mode reduction
3. SGS parameterization for the shallow water equations
Given the system
\[
\frac{dx}{dt} = \varepsilon a^x(x) + b^x(x, y), \\
\frac{dy}{dt} = \frac{1}{\varepsilon} c^y(y) + b^y(x, y).
\]

The corresponding Kolmogorov backward equation for the PDF \(p \) on a slow time scale \(\theta = \varepsilon t \) reads
\[
\partial_\theta p = \frac{1}{\varepsilon^2} L_1 p + \frac{1}{\varepsilon} L_2 p + L_3 p,
\]

\[
L_1 = -c^y(y) \nabla y, \quad L_2 = -b^x(x, y) \nabla x - b^y(x, y) \nabla y, \quad L_3 = -a^x(x) \nabla x.
\]

Asymptotic expansion \(p = p^{(0)} + \varepsilon p^{(1)} + \varepsilon^2 p^{(2)} + \ldots \) gives an evolution equation for \(p^{(0)}(x) \)
\[
\partial_\theta p^{(0)} = L_3 p^{(0)} - P L_2 L_1^{-1} L_2 p^{(0)}
\]

with a projection operator \(P \) defined by the invariant measure of the uncoupled \(y \)-subsystem.

\(^1\)Khas’minskii, 63; Papanicolaou, 76, Majda et al., 01
The additive triad model

Consider the following system of SDEs\(^2\)

\[
\begin{align*}
\frac{dx}{dt} &= B_0 y_1 y_2 \\
\frac{dy_1}{dt} &= B_1 xy_2 - \frac{\gamma_1}{\epsilon} y_1 + \frac{\sigma_1}{\sqrt{\epsilon}} \dot{W}_1 \\
\frac{dy_2}{dt} &= B_2 xy_1 - \frac{\gamma_2}{\epsilon} y_2 + \frac{\sigma_2}{\sqrt{\epsilon}} \dot{W}_2
\end{align*}
\]

where

\[B_0 + B_1 + B_2 = 0,\]

and \(\gamma_{1,2} > 0.\)

\(^2\)Majda et al. 2002
Fast and slow modes

Time autocorrelation functions $C_\tau(v) = \langle v(t)v(t + \tau) \rangle$ for the triad model with $\varepsilon = 0.5$.
The reduced model for the additive triad

After the fast mode elimination, following equation for the slow variable only is obtained\(^3\)

\[
dx = -\alpha x dt + \beta dW ,
\]

where

\[
\alpha = - \frac{B_0}{2(\gamma_1 + \gamma_2)} \left(\frac{\sigma_2^2 B_1}{\gamma_2} + \frac{\sigma_1^2 B_2}{\gamma_1} \right) ,
\]

\[
\beta = B_0 \frac{\sigma_1 \sigma_2}{\sqrt{2} \gamma_1 \gamma_2} \frac{1}{\sqrt{\gamma_1 + \gamma_2}} .
\]

\(^3\)Majda et al., 02
The reduced model for the additive triad

Left: autocorrelation function for the slow variable from the reduced and from the full model with $\varepsilon = 0.5$. Right: ensemble mean and ensemble spread (2σ interval) over time for the full model with $\varepsilon = 0.5, 0.125$ and for the homogenization closure4.

4Wouters, Dolaptchiev, Lucarini and Achatz, 2016, NPG
Outline

1. Motivation

2. Stochastic mode reduction

3. SGS parameterization for the shallow water equations
1D Shallow water equations

We consider the one-dimensional shallow water equations (SWE)

\[\frac{\partial h}{\partial t} + \frac{\partial}{\partial x} \left(hu - \nu \frac{\partial h}{\partial x} \right) = 0 , \]

\[\frac{\partial hu}{\partial t} + \frac{\partial}{\partial x} \left(hu^2 + gh \frac{h^2}{2} - \nu \frac{\partial hu}{\partial x} \right) = \rho hu(x, t) , \]

where \(\rho hu \) represents large-scale stochastic forcing

\[\rho hu = \sum_{k=1}^{3} \frac{\mu \alpha_k}{\sqrt{k \Delta t}} \cos \left\{ 2\pi \left(\frac{k x}{L_x} + \psi_k \right) \right\} \]

with normally distributed random numbers \(\alpha_k, \psi_k \).
1D Shallow water equations

Using a finite-volume scheme the discrete form of the equations reads

$$
\frac{d}{dt} \left(\begin{array}{c} h_i \\ (hu)_i \end{array} \right) + \frac{1}{\Delta x} \left(F_{i+\frac{1}{2}} - F_{i-\frac{1}{2}} \right) = \varrho_i,
$$

with the discrete forcing ϱ_i and the flux at the boundary given by

$$
F_{i+\frac{1}{2}} = \left(\begin{array}{c}
(hu)_{i+1} + (hu)_i - 2\nu \frac{h_{i+1} - h_i}{\Delta x} \\
\frac{(hu)^2_{i+1}}{h_{i+1}} + \frac{(hu)^2_i}{h_i} + \frac{g}{2} h_{i+1}^2 + \frac{g}{2} h_i^2 - 2\nu \frac{(hu)_{i+1} - (hu)_i}{\Delta x}
\end{array} \right).
$$
Forced 1D shallow water model

Potential Energy Spectrum \([(km)^3/d^2]\)

Wavenumber
Local averages and subgrid-scales

The domain is split into intervals of size \(n \Delta x \). We define resolved variables \(H, HU \)

\[
\begin{pmatrix}
 H_I \\
 HU_I
\end{pmatrix} = \frac{1}{n} \sum_{k=nI}^{n(I+1)-1} \begin{pmatrix}
 h_k \\
 hu_k
\end{pmatrix},
\]

and subgrid-scale (SGS) variables \(h', hu' \)

\[
\begin{pmatrix}
 h'_i \\
 hu'_i
\end{pmatrix} = \begin{pmatrix}
 h_i \\
 hu_i
\end{pmatrix} - \begin{pmatrix}
 H_{I[i]} \\
 HU_{I[i]}
\end{pmatrix}.
\]

The model equations can be written as

\[
\frac{d}{dt} \begin{pmatrix}
 H_I \\
 HU_I
\end{pmatrix} = - \frac{F_{(I+1)n-\frac{1}{2}} - F_{nI-\frac{1}{2}}}{n \Delta x} + \varrho I,
\]

\[
\frac{d}{dt} \begin{pmatrix}
 h'_i \\
 hu'_i
\end{pmatrix} = - \frac{F_{i+\frac{1}{2}} - F_{i-\frac{1}{2}}}{\Delta x} + \frac{F_{(I[i]+1)n-\frac{1}{2}} - F_{I[i]n-\frac{1}{2}}}{n \Delta x}.
\]
The discretized 1D SWE can be written in the following abstract form:

\[
\begin{align*}
\dot{x}_i &= \rho_i^x + a_i^x(x) + b_i^x(x, y), \\
\dot{y}_i &= b_i^y(x, y) + c_i^y(y).
\end{align*}
\]

In order to apply the stochastic mode reduction:

- the interaction coefficients \(b_i^x(x, y) \) and \(b_i^y(x, y) \) must have a polynomial form: approximate \(1/h \approx 1/H \);
- eliminate redundant SGS degrees of freedom: averages over a coarse cell vanish;
- find an empirical Ornstein-Uhlenbeck (OU) process for the nonlinear fast self-interactions \(c_i^y(y) \).

This defines the OU-DNS:

\[
\begin{align*}
\dot{x}_i &= \rho_i^x + a_i^x(x) + b_i^x(x, y), \\
\dot{y}_i &= b_i^y(x, y) + \Lambda_{ij} y_j + \Sigma_i \hat{W}_i,
\end{align*}
\]

where \(\Lambda \) and \(\Sigma \) denote the OU drift and diffusion coefficients.
Results OU-DNS

Potential Energy Spectrum

Correlation h

- DNS
- OU-DNS
- TSF

Wavenumber

Lag [days]
We obtain the following effective stochastic differential equation for x

$$dx_i = \left[\varrho_i^x + a_i^x(x) + \beta_i(x)\right]dt + d\xi_i(x).$$

Here β_i represents the deterministic part and $d\xi_i$ the stochastic part of the SGS parameterization

$$\beta_i = \int_0^\infty d\tau \left\langle b_j^x(x, y) \frac{\partial b_i^x(x, y(\tau))}{\partial x_j} \right\rangle$$

$$+ \langle yy^T \rangle_{jm}^{-1} \int_0^\infty d\tau \left\langle y_m b_j^y(x, y)b_i^x(x, y(\tau)) \right\rangle - \int_0^\infty d\tau \left\langle \frac{\partial b_j^y(x, y)}{\partial y_j} b_i^x(x, y(\tau)) \right\rangle,$$

$$d\xi_i = \sqrt{2}B_{ij}dW_j \quad B_{ik}B_{jk} = \int_0^\infty d\tau \left\langle b_i^x(x, y(0))b_j^x(x, y(\tau)) \right\rangle.$$
Empirical OU parameterizations: BRT-OU & LRM-OU

For comparison we consider two purely empirical OU SGS parameterizations, where the number of modes coupled is the same as in the SMR.

- bare truncation + OU parameterization BRT-OU

\[
dx_i = \left(\rho_i^x + a_i^x(x) + \tilde{\Gamma}_{ij} \hat{x}_j^I \right) dt + \tilde{\sigma}_i dW_i.
\]

- low resolution model + OU parameterization LRM-OU: DNS on a coarse grid with parameterization.
Results: ACF and spectra

Figure: Left: time autocorrelation. Relative errors are: 10.5% LRM-OU, 6.6 % BRT-OU and 3.4% BRT-SMR. Right: potential energy spectrum.
Sensitivity stochastic forcing

Figure: The potential energy spectrum in DNS, BRT-SMR, BRT-SMR with a damped stochastic forcing $d\xi \rightarrow 0.75d\xi$ and BRT-SMR with neglected stochastic forcing $d\xi \rightarrow 0$ (BRT-SMR deterministic).
Scale-awareness of the parameterization

Figure: The simulations for an averaging interval of 16, BRT-OU is unstable.
Conclusions and outlook

- subgrid-scale motion models constructed using systematic stochastic mode reduction strategy
- local parameterization, applicable for large number of resolved modes
- deterministic corrections, additive and multiplicative noise in the effective equations
- subgrid-scale closure for two level primitive equation model