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Motivation

Stochastic parameterizations are applied (e.g. Palmer 2001, Berner et al,
2016) in order to:

@ reduce systematic model error

@ represent uncertainty in weather and climate predictions
@ trigger regime transitions

° ...

Common approach in comprehensive climate and weather models
includes

@ stochastically perturbed physical parameterization tendencies
(Buizza et al. 1999, Palmer et al. 2009 )

@ stochastic kinetic energy back-scatter (Shutts 2005, Berner et al. 2009)
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Bias in outgoing longwave radiation (DJF) for a simulation without
(left) and with (right) stochastic parameterization (SPPT & SPBS) in
the ECMWF seasonal forcast system. Hindcasts for the period
1981-2010. From Weisheimer et al. 2014



Some open issues with (stochastic) parameterizations

@ empirical tuning

@ a posteriori nature of some parameterizations

@ scale-aware parameterizations
Derivation of stochastic subgrid-scale parameterization from first
principles

@ maximum entropy principle, (e.g. Verkley & Severijns 20014, Verkley et al.

2015)
@ response theory (Wouters & Lucarini 2012, 2013): weak coupling

@ averaging method (e.g. Hasselmann 1976; Imkeller & Storch 2001; Arnold et
al. 2003, Monahan & Culina 2011): require time scale separation

@ homogenization or stochatic mode reduction (e.g. Majda, Timoveyev
& Vanden Eijnden 2001, 2002; Franzke & Majda 2006; Franzke 2013): require
time scale separation



Local stochastic parameterization for the Burgers

equation
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Energy spectra for: DNS, bare truncation model (BRT), Smagorinsky
SGS model (SMG) and reduced stochastic model with stochastic
mode reduction parameterization (RSM).

From Dolaptchiev et al. 2013
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Stochastic mode reduction (homogenization)'

Given the system

dx " "
E_ea ($>+b (xay)7
dy _ 1., y
dt _SC (y)+b (xvy)

The corresponding Kolmogorov backward equation for the PDF p on
a slow time scale 6 = <t reads

1 1
Ogp = ?Llp + EL2p + Lsp,

Li=-cy)Vy, Ly=-b(z,y)Vy—b(z,y)Vy, Lz=—a"(z)V,.

Asymptotic expansion p = p(©) +ep™) +£2p(®) + .. gives an evolution
equation for p(©) ()
9pp'®) = Lsp'® — PLy Ly Lop!®

with a projection operator P defined by the invariant measure of the

"Khas’minskii, 63; Papanicolaou, 76, Majda et al., 01



The additive triad model

Consider the following system of SDEs?

% = Boy1y2
% = Bizys — %yl + %Wl
% = Baxys — %yQ + %WQ
where
Bo+ B1+ By =0,
and 1,2 > 0.

2Majda et al. 2002



Fast and slow modes
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Time autocorrelation functions C, (v) = (v(t)v(t + 7)) for the triad
model with ¢ = 0.5.



The reduced model for the additive triad

After the fast mode elimination, following equation for the slow
variable only is obtained®

dx = —axdt + dW

where

BO (U%Bl U%BQ)
= _ + ,
2(n+72) \ e ol

0102 1

= B .
b 0 V27172 V1 + 2

3Majda et al., 02



The reduced model for the additive triad
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Left: autocorrelation function for the slow variable from the reduced
and from the full model with ¢ = 0.5. Right: ensemble mean and
ensemble spread (2o interval) over time for the full model with
e = 0.5,0.125 and for the homogenization closure®.

4Wouters, Dolaptchiev, Lucarini and Achatz, 2016, NPG
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1D Shallow water equations

We consider the one-dimensional shallow water equations (SWE)

Oh 8( 5‘h>
—+—(hu—v— | =0,
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where gy, represents large-scale stochastic forcing

o= e e (3 40

with normally distributed random numbers oy, .
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1D Shallow water equations

Using a finite-volume scheme the discrete form of the equations

reads
d [ h 1 -
i (o, ) an (P -Foy) =en

with the discrete forcing p; and the flux at the boundary given by

hiv1 — hy
v Az

9,2 o (Pw)ip1 — (hu);
+ hz+1 + 2h1 21/ A:I;

(hu)i_H + (hu)l -2
Foy=| (w2, | (2
hiva h;



Forced 1D shallow water model

Potential Energy Spectrum [(km)3/d2]

10| DNS|
1 2 4 8 16 32 64 128 256
Wavenumber




Local averages and subgrid-scales

The domain is split into intervals of size nAz. We define resolved
variables H, HU

and subgrid-scale (SGS) variables k', hu'

The model equations can be written as

i H[ _ F(I+1)n—§ _Fnl—% n

dt \ HU; |~ nAx or

d < h! ) Fiv:r—Fior Fumryn-1 —Frn-1
Ax

dt \ hul nAx




DNS and OU-DNS

The discretized 1D SWE can be written in the following abstract form

i"i :Qf + aiz(x) + bzx(x7y) )
i =b} (X,¥) +¢f(y).

In order to apply the stochastic mode reduction

@ the interaction coefficients b7 (x,y), b (x,y) must have a
polynomial form: approximate 1/h ~ 1/H

@ eliminate redundant SGS degrees of freedom: averages over a
coarse cell vanish

@ find an empirical Ornstein-Uhlenbeck (OU) process for the
nonlinear fast self-interactions ¢ (y)

This defines the OU-DNS

& =07 + aj (X) + b7 (X,Y) ,
gi =bY (X, ) + Ayjy; + S Wi,

where A and X denote the OU drift and diffusion coefficients.



Results OU-DNS
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SGS model for the 1D SWE °

We obtain the following effective stochastic differential equation for «
da; = [of + ai (X) + Bi(X)] dt + d&(X) .

Here j3; represents the deterministic part and d¢; the stochastic part
of the SGS parameterization

+ Y )i /0 " dr (g (Y (Y1) — /O T <abﬂé(x’ y)

bf(x,v<T>>> |

J

des =VEBiAW; Buy = [ dr (5 (x (OB (x y(r)

0

5Zacharuk, Dolaptchiev, Achatz and Timofeyev, 2018, submitted



Empirical OU parameterizations: BRT-OU & LRM-OU

For comparison we consider two purely empirical OU SGS
parameterizations, where the number of modes coupled is the same
as in the SMR.

@ bare truncation + OU parameterization BRT-OU

@ low resolution model + OU parameterization LRM-OU: DNS on a
coarse grid with parameterization.



Results: ACF and spectra
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Figure: Left: time autocorrelation. Relative errors are: 10.5% LRM-OU, 6.6 %
BRT-OU and 3.4% BRT-SMR. Right: potential energy spectrum.



Sensitivity stochastic forcing
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Figure: The potential energy spectrum in DNS, BRT-SMR, BRT-SMR with a
damped stochastic forcing d¢ — 0.75d¢ and BRT-SMR with neglected
stochastic forcing d¢ — 0 (BRT-SMR deterministic).



Scale-awareness of the parameterization

Potential Energy Spectrum n=16 [(km)3/day2]
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Figure: The simulations for an averaging interval of 16, BRT-OU is unstable.



Conclusions and outlook

subgrid-scale motion models constructed using systematic
stochastic mode reduction strategy

local parameterization, applicable for large number of resolved
modes

deterministic corrections, additive and multiplicative noise in the
effective equations

subgrid-scale closure for two level primitive equation model
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