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Introduction
• In the late 70s and 80s, observational analyses estimated 

horizontal kinetic and potential energy spectra in the upper 
troposphere and lower stratosphere – Global Atmospheric 
Sampling Program (GASP; Nastrom & Gage, 1985), 
Measurement of Ozone by Airbus In-Service aircraft 
(MOSAIC; Marenco, 1998, Lindborg, 1999)  

• Results summarized in papers by Nastrom, Gage et al. and 
became known as the Nastrom & Gage spectra, or 
canonical spectra

• On synoptic scales (2-3 x 103 to 500km), the slope is kh
-3,  

kh – the horizontal wavenumber 
• On mesoscales (500 to 10 km), spectrum transitions to the 

Kolmogorov kh
-5/3 slope 

• May correspond to either up-scale (inverse) or down-scale 
(direct) energy transfer

• Spectra are remarkably universal throughout the troposphere 
and stratosphere, the seasons, but are dependent on latitude

• Spectral amplitude decreases towards the equator 
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What is the physics of this behavior? 
• Still no consensus
• Most common – kh

-3 branch is due to direct enstrophy
cascade, following Kraichnan’s theory of 2D turbulence 
and Charney’s (1971) scaling

• But – O’Gorman & Schneider (2007) showed that 
enstrophy cascade is unnecessary

• Cho & Lindborg (2001) – there is no explanation of the 
kh

-3 range other than Charney’s two-dimensionalization
• Lovejoy (2009) – kh

-3 range is not present; is due to 
analysis errors

• Dynamics of kh
-5/3 range is even less clear

• Was considered to be due to inverse cascade – but 
Lindborg (1999) used structure functions to demonstrate 
direct cascade

• Lindborg suggested stratified turbulence – but 
Skamarock et al. (2014) showed it unsupported  

• Cho & Lindborg (2001) – the Coriolis force may be 
crucial but is almost impossible to be accounted for via 
the energy equation 
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Still no clear understanding of the physics, but how 
important is it?

• The dynamics is of more than just academic interest
• Design and configuration of atmospheric prediction systems are based on understanding of 

the dynamics 
• May have implications for forecast error growth, spinup time scales, filtering and 

subfilterscale physics (e.g., Skamarock 2004; Shutts 2005)
• Atmospheric models’ ability to reproduce the canonical spectrum is taken as validation of the 

correctness of a model’s formulation, implementation, and configuration. 
• The KE spectrum provides a measure of model’s effective resolution (i.e. filter scale) and 

filter effects
• But is there indeed a connection between model configuration and correctness of simulated 

spectrum?
• Are vertical resolution and the form and magnitude of filtering connected? 
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More questions, less clarity…
• Lovejoy et al. (2009) questioned the importance of turbulence and its 

anisotropization in interpretation of the N&G spectra 
• Warned that failure to account for different scaling laws for turbulent 

processes in the horizontal and vertical directions may lead to 
spurious results

• Questioned the attribution of the two horizontal scaling regimes to a 
transition from small-scale 3D isotropic turbulence to large-scale 2D 
isotropic turbulence

• Suggested that in anisotropic turbulence, structures progressively 
flatten out with increasing scale and may obey a power law that 
obliterates the need in invoking the 3D-2D transition

• ‘the entire mainstream view of the atmosphere has 
fundamentally been coloured by the assumption of isotropic 
turbulence’
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The polemics culminated in a visionary remark by 
Yano (2010):

“In summary, in spite of appealing nature of the anisotropic 
turbulence theory that potentially unifies the atmospheric flows of 
all scales, as it stands for now, it remains a purely statistical 
theory without a counterpart dynamical model for describing the 
system in deterministic manner. Such a system should have a 
capacity of continuously transforming from a quasi-geostrophy to 
nonhydrostatic anelasticity. My naive feeling is that an elaborated 
use of a renormalization group (RNG) theory might potentially 
lead to a necessary theoretical breakthrough, but I should not be 
too speculative.”
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RNG-based Quasi-Normal Scale Elimination (QNSE) 
theory indeed offers such a breakthrough

• Conceptually close to RNG
• Yields analytical expression for the N&G spectrum and explains its major 

features, both qualitatively and quantitatively
• Considers 3D fluid occupying infinite domain; dynamics is represented by full 

Navier-Stokes and continuity equations in a coordinate frame rotating with the 
angular velocity Ω

• QNSE is an algorithm of successive coarsening of the flow domain by cyclically 
eliminating small shells of wave number modes and computing compensating 
corrections to the viscosity leading to viscosity renormalization

• Scale elimination is accomplished by mapping the modes in a shell onto a 
fluctuating quasi-normal vector field (hence the quasi-normal scale elimination, or 
QNSE) via the Langevin equation

• No quasi-geostrophy is implied 
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Mathematical formulation
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Solution’s steps
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The crossover between turbulence and inertial waves is on scales O(LΩ)
LΩ = (ε/f3)1/2 is the Woods scale, f = 2Ω is the Coriolis parameter

Rotation leads to the development of the inverse cascade on scales > LΩ
To avoid negative viscosities, the derivations are only up to O(f2)

The procedure of the coarse-graining:

 Introduce the dynamic dissipation cutoff wavenumber, Λ, a small shell ∆ Λ, ∆Λ /Λ << 1,  `slow' and `fast' 
modes

 Compute O(∆Λ) correction to the inverse Green function by ensemble averaging of the fast 
modes over ∆Λ. This correction generates O(∆Λ) accruals to all renormalized viscosities while 
preserving the analytical form of the governing equations

 All viscosities are updated and the process moves forward towards elimination of the next shell ∆Λ



Analytical results
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Parameters and scales
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The spectral Rossby number, Ro(k) 
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LΩ is the Woods scale; introduced about 20 years prior to Zeman

Is analogous to the Ozmidov scale in flows with stable stratification, N is 
replaced by Ω



The analytical solution
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Viscosity and diffusivity renormalization
• In turbulence on f-plane introduce the Woods scale

LΩ = (ε/f3)1/2

• Analogous to Ozmidov scale
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• Weak rotation, k/kΩ = O(1)
• On small scales, turbulence is 

isotropic and Kolmogorov-like
• Viscosity undergoes 

anisotropization and 
componentality

• 4 renormalized viscosities that act 
in different directions and on 
different velocity components

• Horizontal viscosity → 0 ⇒
indication of the inverse cascade
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Analytical expressions for the spectra
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Nastrom & Gage Spectra
• Zonal spectrum of zonal velocity (longitudinal):

• The dissipation rate ε = 5x10-5 m2s-3 

(after Frehlich & Sharman, 2010)
• Latitude 30oN
• Transverse spectrum:

• Spectra are derived with no approximations; no 
geostrophy is implied

• The flow is forced on large scales and features direct 
cascade throughout to small scales

• The physics: Anisotropic turbulence with dispersive 
(inertial) waves

• Spectra are universal as they depends on f only
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Ratio E2(k1)/E1(k1)
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The analytically computed ratio shows that 

(1) The transverse spectrum is larger 
than the longitudinal one

(2) The ratio corresponds to the transition 
from the Kolmogorov to k1

-3 slope on 
large scales

(3) On large scales, the relationship 
E2(k1) = 3E1(k1) does not hold. 
Instead, E2(k1) = 2.59 E1(k1)

(4) Evidence of the absence of two-
dimensionality 



Structure functions
• Locally homogeneous and isotropic turbulence can be analyzed using structure 

functions
• Velocity increments are computed along a vector L joining two points separated 

by a distance r
• Parallel and orthogonal projections of the velocity increments upon L are 

longitudinal (L) and transverse (T) - δuL(r) and δuT(r)
• Statistical moments of the velocity increments are structure functions:

• In isotropic and homogeneous turbulence, d – dimension of space,

• On large scales, DTT(r)/DLL(r) = 3 in 2D and 2 in 3D flows
• QNSE gives 2.59 and so 2 < d=2.26 < 3!
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Comparison with MOSAIC data
• Wiener-Khinchin relations:

• 1D spectra are known from QNSE  can compute 
structure functions and compare with data (Lindborg, 
1999)

• The first analytical derivation of the structure functions 
for atmospheric turbulence 

• On large scales, the flow dimensionality is smaller than 
3 but larger than 2

• Complete two-dimensionalization is never achieved –
Bellet et al. (JFM, 2006)
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Dependence of the spectrum on latitude
• Has not been explained
• QNSE provides quantitative explanation
• In good agreement with data
• Important confirmation that the theory 

does describe the phenomenon
• Suggests that the kh

-3 branch may 
completely disappear near the equator

• This was indeed observed in the data for 
the ocean near-surface winds (Xu et al., 
2011) 
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Spectra of the ocean near-surface winds
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Ocean campaigns
• If the large-scale spectrum depends on f only, one expects to find it in 

other environments, for instance, oceans
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Oleander campaign
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Zonal (solid) and meridional (dashed–dotted) 
velocity spectra from the Oleander observations. 
Dashed lines indicate a 23 slope. The 95%
confidence interval is marked (from Wang et al., 
JPO, 2010) 



Conclusions
• N&G spectra and structure functions are explained within an analytical theory of 

turbulence for the first time
• QNSE uses N-S equation in rotating frame with no approximations
• Utilizes the concept of anisotropic turbulence
• Accounts for the effect of the Coriolis force on large-scale dynamics
• Implies large-scale forcing and direct cascade throughout the spectrum to the dissipation 

scales
• Results are in good agreement with observational data sets
• Spectra’s and structure functions’ latitudinal dependence is explained 
• On large scales, turbulence reveals dimensionality >2 but <3
• Physics is important and model’s ability to reproduce the canonical spectra is essential
• Quantitative framework for scale-awareness of parameterized viscosities, 

hyperviscosities, diffusivities, etc. – Takahashi, Hamilton et al. and also many 
oceanographers determine it empirically, using extensive simulations.

• Do we over-rely upon the geostrophic turbulence and quasi-two-dimensionalization
approximations?
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