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Motivation behind the project

Most ocean GCMs lack the necessary spatial resolution to resolve
the eddy scales, therefore eddies and their effects have to be
parameterised, including that of eddy-induced material transport.

Currently, material transport is assumed to be:

I isotropic,

I diffusive,

I and for the most part homogenous.

Why are these assumptions made?

Turbulence is traditionally treated as downgradient diffusion, i.e
that the flow behaves as a random walk, as suggested by Taylor in
1921.
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The aims of the project

The aim of this project is to build a transport model that can be
used to advect Lagrangian particles by the velocity field of a
realistic but simple meadering jet.

Statistics of the particle trajectories will then be analysed in order
to devise a more suitable method of parameterising eddy-induced
transport in the ocean for use in non-eddy resolving GCMs.
Two routes will be explored in this presentation :

I Divising a new dispersion measure.

I Using EOFs as a motivation behind a kinematic model.
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Dynamical Model

We will use a doubly periodic 2-layer Quasi-Geostrophic model
using the β-plane approximation and a rigid lid to generate a
meandering jet.

Governing Equations

D1

Dt

(
∇2ψ1 − S1(ψ1 − ψ2)

)
+ βv1 = F1 (1)

D2

Dt

(
∇2ψ2 − S2(ψ2 − ψ1)

)
+ βv2 = F2 (2)

where S1 and S2 are the stratification parameters : Sn = f 2
0 /g

′Hn

and g ′ = ∆ρ/ρ is the reduced gravity. Fn consists of viscosity in
both layers and bottom friction in the bottom layer.
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The jet regime

The dynamical model was run with a grid resolution of 512 x 512,
a domain size of 520km x 520km and an eastward zonal velocity of
6 cm s−1 in the top layer and a viscosity of 1 m2s−1.

Two different parameter regimes were generated by varying the
bottom friction: a coherent jet with a bottom friction of
1× 10−8s−1 and a latent jet with it set as 2.5× 10−8s−1.
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The jet regime

Figure: The PV in the top layer for the two regimes.
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The jet regime

Figure: The PV anomaly in the top layer for the two regimes.
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Extracting the ’eddying’ part.

Two different eddying trajectories will be examined:

I eddy-only (EO), where the particles are advected using the
eddying velocity only: u′(t) = u(t)− u;

I full-following-eddy (FFE), which takes into account the mean
flow’s ability to advect particles between eddies.

I The displacement due to the mean flow is calculated following
the full trajectory.

I At each time step the difference between the full displacement
and mean displacement is calculated.

I The difference in displacements are then cumulatively added.
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Single-Particle Statistics

Single-Particle Dispersion (SPD)

Dx(t) =
1

N

N∑
n=1

(xn(t)− xn(0))2 , Dy (t) =
1

N

N∑
n=1

(yn(t)− yn(0))2 .

Fitting the SPD to time using a power law: Di ∼ tαi allows us to
quantify diffusivity.

I if 0.8 < αi < 1.2, transport is said to be roughly diffusive,

I if αi < 0.8, transport is said to be sub-diffusive,

I if αi > 1.2, transport is said to be super-diffusive.
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Time Scale

The domain is divided into 10 equally sized zonal bins of width W .
The time scale is the time at which

√
Dy (t) >W .

Figure: Time Scale for the coherent jet for 10 bins.
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αi across the domain

Figure: αi in 10 zonally averaged bins superimposed on the
time-averaged stream function in the coherent jet.
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Diffusivity

Definition

Kx =
1

2

∂Dx

∂t
, Ky =

1

2

∂Dy

∂t
. (3)

In diffusive regimes, Dx ,Dy grow linearly in time, and hence
Kx ,Ky are constant.
K is the parameterised variable in the advection diffusion equation.

Limitations : It only measures a particles ‘geographic’ diffusivity.
In the case of a meandering jet, a particle may remain on the jet
and so its meridional dispersion increases even if the particle is not
moving relative to the flow.
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PV based dispersion

I There is a one-to-one map between the zonally and
time-averaged full PV, q̃, and y .
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PV based dispersion

The method
I Interpolate the instantaneous PV to find the PV at the

particle location : q(xn(t), yn(t)).

I Find y such that q̃(y) = q(xn(t), yn(t)). Call it Y (t)

I The PV mapped dispersion is dY (t) =
〈
(Y (t)− Y (0))2

〉
.
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PV based dispersion

I Binning Method : The domain is binned into 10 zonal bins,
however unlike for regular single particle dispersion, q̃(y) is
binned uniformly so that regions with high PV gradients have
narrower bins.

I 5000 particles are released uniformly in each bin in 9 separate
releases and run for 1000 days.
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PV based dispersion

We compare the PV mapped dispersion against the meridional
component of the SPD for the bin with the smallest averaged bin
width and the largest.

Figure: Bin 6 Figure: Bin 8
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Time Scale

PV mapped dispersion and bin widths are averaged over the
different releases. The time scale is taken to be the time at which√

dY (t) >W .

Figure: Time scale for PV mapped dispersion in 10 zonal PV bins for the
coherent jet in the top layer.
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α across the domain

PV mapped dispersion and bin widths are averaged over the
different releases. The time scale is taken to be the time at which√

dY (t) >W .

Figure: α for PV mapped dispersion in 10 zonal PV bins for the coherent
jet in the top layer.
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EOFs

(a) Mode 1 (b) Mode 2 (c) Mode 3

(d) Mode 4 (e) Mode 5 (f) Mode 6

Figure: The first 6 stream function EOFs in the top and bottom layer for
the coherent jet.
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Comparison of SPDs

(a) Bin 1

Josephine Park and Pavel Berloff
Oceanic Material Transport



Comparison of SPDs

(b) Bin 5
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Further work and Limitations: PV Mapped
Dispersion

Further Work
I Could this method produce a more accurate approximation for

a diffusivity?

Limitations
I The method relies on finding a one-to-one map between y

and some flow dependent variable.

I The PV is averaged both temporally and zonally - could a
sharper map be found?

I This method only applies in the meridional direction of a
zonally symmetric flow.
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Summary and Further work: EOFs

Summary

I The first 6 EOFs seem to do a pretty good job and capturing
Eddy-Only zonal dispersion.

I They do a poor job of capturing meridional dispersion away
from the jet.

I At short time scales, EOFs capture meridional transport in the
jet. After this time, the particles perhaps leave the jet region.

Further Work
I Could the EOFs be used to build a kinematic model?

Meridional random noise could be added to the EOFs?
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Thank you for listening.
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