

Lagrangian Transport in an Idealised Meandering Jet

Josephine Park and Pavel Berloff

Imperial College London

5th April 2018

Josephine Park and Pavel Berloff Oceanic Material Transport ペロト < 団 ト < 臣 ト < 臣 ト 三 の < ()</p>

Table of Contents

Introduction and Motivation

The Model

Standard Lagrangian Statistics - confirming anisotropic and non-diffusive spreading

An alternative dispersion measure

Advecting particles using EOFs

Summary and Further Work

Josephine Park and Pavel Berloff Oceanic Material Transport

Motivation behind the project

Most ocean GCMs lack the necessary spatial resolution to resolve the eddy scales, therefore eddies and their effects have to be parameterised, including that of eddy-induced material transport.

Motivation behind the project

Most ocean GCMs lack the necessary spatial resolution to resolve the eddy scales, therefore eddies and their effects have to be parameterised, including that of eddy-induced material transport. Currently, material transport is assumed to be:

Motivation behind the project

Most ocean GCMs lack the necessary spatial resolution to resolve the eddy scales, therefore eddies and their effects have to be parameterised, including that of eddy-induced material transport. Currently, material transport is assumed to be:

isotropic,

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Motivation behind the project

Most ocean GCMs lack the necessary spatial resolution to resolve the eddy scales, therefore eddies and their effects have to be parameterised, including that of eddy-induced material transport. Currently, material transport is assumed to be:

- isotropic,
- diffusive,

< ロ > < 母 > < 臣 > < 臣 > 三 = の < @</p>

Motivation behind the project

Most ocean GCMs lack the necessary spatial resolution to resolve the eddy scales, therefore eddies and their effects have to be parameterised, including that of eddy-induced material transport. Currently, material transport is assumed to be:

- isotropic,
- diffusive,
- ► and for the most part homogenous.

・ロト ・日 ・ ・ ヨ ・ ・ ヨ ・ うへぐ

Motivation behind the project

Most ocean GCMs lack the necessary spatial resolution to resolve the eddy scales, therefore eddies and their effects have to be parameterised, including that of eddy-induced material transport. Currently, material transport is assumed to be:

- isotropic,
- diffusive,
- ► and for the most part homogenous.

Why are these assumptions made?

Turbulence is traditionally treated as downgradient diffusion, i.e that the flow behaves as a random walk, as suggested by Taylor in 1921.

Centre for Doctoral Training

The aims of the project

The aim of this project is to build a transport model that can be used to advect Lagrangian particles by the velocity field of a realistic but simple meadering jet.

The aims of the project

The aim of this project is to build a transport model that can be used to advect Lagrangian particles by the velocity field of a realistic but simple meadering jet.

Statistics of the particle trajectories will then be analysed in order to devise a more suitable method of parameterising eddy-induced transport in the ocean for use in non-eddy resolving GCMs.

Josephine Park and Pavel Berloff Oceanic Material Transport ペロト 4日 ト 4日 ト 4日 ト 4日 ト 9 へ (?)

The aims of the project

The aim of this project is to build a transport model that can be used to advect Lagrangian particles by the velocity field of a realistic but simple meadering jet.

Statistics of the particle trajectories will then be analysed in order to devise a more suitable method of parameterising eddy-induced transport in the ocean for use in non-eddy resolving GCMs. Two routes will be explored in this presentation :

- Divising a new dispersion measure.
- Using EOFs as a motivation behind a kinematic model.

< ロ > < 母 > < 臣 > < 臣 > < 臣 > < 臣 < つ < や</p>

Table of Contents

Introduction and Motivation

The Model

Standard Lagrangian Statistics - confirming anisotropic and non-diffusive spreading

An alternative dispersion measure

Advecting particles using EOFs

Summary and Further Work

Josephine Park and Pavel Berloff Oceanic Material Transport

Dynamical Model

We will use a doubly periodic 2-layer Quasi-Geostrophic model using the β -plane approximation and a rigid lid to generate a meandering jet.

Governing Equations

$$\frac{D_1}{Dt} \left(\nabla^2 \psi_1 - \mathcal{S}_1(\psi_1 - \psi_2) \right) + \beta v_1 = F_1 \tag{1}$$

$$\frac{D_2}{Dt} \left(\nabla^2 \psi_2 - S_2(\psi_2 - \psi_1) \right) + \beta v_2 = F_2$$
 (2)

where S_1 and S_2 are the stratification parameters : $S_n = f_0^2/g' H_n$ and $g' = \Delta \rho / \rho$ is the reduced gravity. F_n consists of viscosity in both layers and bottom friction in the bottom layer.

Centre for

Doctoral

Training

200

Mathematics

Dynamical Model

We will use a doubly periodic 2-layer Quasi-Geostrophic model using the β -plane approximation and a rigid lid to generate a meandering jet.

Governing Equations

$$\frac{D_1}{Dt} \left(\nabla^2 \psi_1 - S_1(\psi_1 - \psi_2) \right) + \beta v_1 = F_1$$
 (1)

$$\frac{D_2}{Dt} \left(\nabla^2 \psi_2 - S_2(\psi_2 - \psi_1) \right) + \beta v_2 = F_2$$
 (2)

where S_1 and S_2 are the stratification parameters : $S_n = f_0^2/g'H_n$ and $g' = \Delta \rho / \rho$ is the reduced gravity. F_n consists of viscosity in both layers and bottom friction in the bottom layer.

Centre for Doctoral Training Mathematics

The jet regime

The dynamical model was run with a grid resolution of 512 x 512, a domain size of 520km x 520km and an eastward zonal velocity of 6 cm s⁻¹ in the top layer and a viscosity of 1 m²s⁻¹.

▲ロト▲母ト▲目ト▲目ト 目 のへぐ

The jet regime

The dynamical model was run with a grid resolution of 512 x 512, a domain size of 520km x 520km and an eastward zonal velocity of 6 cm s⁻¹ in the top layer and a viscosity of 1 m²s⁻¹. Two different parameter regimes were generated by varying the bottom friction: a coherent jet with a bottom friction of 1×10^{-8} s⁻¹ and a latent jet with it set as 2.5×10^{-8} s⁻¹.

▲ロト▲母ト▲目ト▲目ト 目 のへぐ

The jet regime

Figure: The PV in the top layer for the two regimes.

Josephine Park and Pavel Berloff Oceanic Material Transport

Centre for Doctoral Training

The jet regime

Figure: The PV anomaly in the top layer for the two regimes.

Table of Contents

Introduction and Motivation

The Model

Standard Lagrangian Statistics - confirming anisotropic and non-diffusive spreading

An alternative dispersion measure

Advecting particles using EOFs

Summary and Further Work

Josephine Park and Pavel Berloff Oceanic Material Transport

Extracting the 'eddying' part.

Two different eddying trajectories will be examined:

► eddy-only (EO), where the particles are advected using the eddying velocity only: u'(t) = u(t) - ū;

Extracting the 'eddying' part.

Two different eddying trajectories will be examined:

- ► eddy-only (EO), where the particles are advected using the eddying velocity only: u'(t) = u(t) ū;
- full-following-eddy (FFE), which takes into account the mean flow's ability to advect particles between eddies.
 - The displacement due to the mean flow is calculated following the full trajectory.
 - ► At each time step the difference between the full displacement and mean displacement is calculated.
 - ► The difference in displacements are then cumulatively added.

200

Single-Particle Statistics

Single-Particle Dispersion (SPD)

$$D_x(t) = \frac{1}{N} \sum_{n=1}^{N} (x_n(t) - x_n(0))^2, \quad D_y(t) = \frac{1}{N} \sum_{n=1}^{N} (y_n(t) - y_n(0))^2.$$

Fitting the SPD to time using a power law: $D_i \sim t^{\alpha_i}$ allows us to quantify diffusivity.

- if $0.8 < \alpha_i < 1.2$, transport is said to be roughly diffusive,
- if $\alpha_i < 0.8$, transport is said to be sub-diffusive,
- if $\alpha_i > 1.2$, transport is said to be super-diffusive.

Time Scale

The domain is divided into 10 equally sized zonal bins of width W. The time scale is the time at which $\sqrt{D_y(t)} > W$.

Figure: Time Scale for the coherent jet for 10 bins.

EPSRC Engineering and Physical Scien Research Council

 α_i across the domain

Figure: α_i in 10 zonally averaged bins superimposed on the time-averaged stream function in the coherent jet. $\Box \mapsto \langle \Box \rangle = \langle \Box \rangle = \langle \Box \rangle$

Table of Contents

Introduction and Motivation

The Model

Standard Lagrangian Statistics - confirming anisotropic and non-diffusive spreading

An alternative dispersion measure

Advecting particles using EOFs

Summary and Further Work

Josephine Park and Pavel Berloff Oceanic Material Transport - ▲日 > ▲ 国 > ▲ 国 > ▲ 国 > ▲ 日 > ▲ 国 > ▲ B > ■ B

Diffusivity

Definition

$$K_x = \frac{1}{2} \frac{\partial D_x}{\partial t}, \quad K_y = \frac{1}{2} \frac{\partial D_y}{\partial t}.$$
 (3)

In diffusive regimes, D_x , D_y grow linearly in time, and hence K_x , K_y are constant.

 ${\bf K}$ is the parameterised variable in the advection diffusion equation.

▲ロト▲母ト▲目ト▲目ト 目 のへぐ

Diffusivity

Definition

$$K_{x} = \frac{1}{2} \frac{\partial D_{x}}{\partial t}, \quad K_{y} = \frac{1}{2} \frac{\partial D_{y}}{\partial t}.$$
 (3)

In diffusive regimes, D_x , D_y grow linearly in time, and hence K_x , K_y are constant.

K is the parameterised variable in the advection diffusion equation. Limitations : It only measures a particles 'geographic' diffusivity. In the case of a meandering jet, a particle may remain on the jet and so its meridional dispersion increases even if the particle is not moving relative to the flow.

ペロト 《 昂 ト 《 臣 ト 《 臣 ト ○ 臣 ○ ○ ○ ○

PV based dispersion

► There is a one-to-one map between the zonally and time-averaged full PV, q̃, and y.

Josephine Park and Pavel Berloff Oceanic Material Transport

Centre for Doctoral Training **Mothematics**

PV based dispersion

The method

► Interpolate the instantaneous PV to find the PV at the particle location : q(x_n(t), y_n(t)).

ロト 《 昂 ト 《 臣 ト 《 臣 ト 《 巳 ト 《

Josephine Park and Pavel Berloff Oceanic Material Transport

Engineering and Physical Sciences Training Research Council

PV based dispersion

The method

- Interpolate the instantaneous PV to find the PV at the particle location : $q(x_n(t), y_n(t))$.
- Find y such that $\tilde{q}(y) = q(x_n(t), y_n(t))$. Call it Y(t)

200

Training

PV based dispersion

The method

- ► Interpolate the instantaneous PV to find the PV at the particle location : q(x_n(t), y_n(t)).
- Find y such that $\tilde{q}(y) = q(x_n(t), y_n(t))$. Call it Y(t)
- The PV mapped dispersion is $dY(t) = \langle (Y(t) Y(0))^2 \rangle$.

PV based dispersion

► Binning Method : The domain is binned into 10 zonal bins, however unlike for regular single particle dispersion, q̃(y) is binned uniformly so that regions with high PV gradients have narrower bins.

<ロ> < 団> < 団> < 三> < 三> < 三</p>

PV based dispersion

- ► Binning Method : The domain is binned into 10 zonal bins, however unlike for regular single particle dispersion, q̃(y) is binned uniformly so that regions with high PV gradients have narrower bins.
- ► 5000 particles are released uniformly in each bin in 9 separate releases and run for 1000 days.

PV based dispersion

We compare the PV mapped dispersion against the meridional component of the SPD for the bin with the smallest averaged bin width and the largest.

Time Scale

PV mapped dispersion and bin widths are averaged over the different releases. The time scale is taken to be the time at which $\sqrt{dY(t)} > W$.

Josephine Park and Pavel Berloff Oceanic Material Transport

α across the domain

PV mapped dispersion and bin widths are averaged over the different releases. The time scale is taken to be the time at which $\sqrt{dY(t)} > W$.

Figure: α for PV mapped dispersion in 10 zonal PV bins for the coherent jet in the top layer.

Josephine Park and Pavel Berloff Oceanic Material Transport

Table of Contents

- Introduction and Motivation
- The Model
- Standard Lagrangian Statistics confirming anisotropic and non-diffusive spreading
- An alternative dispersion measure

Advecting particles using EOFs

Summary and Further Work

Josephine Park and Pavel Berloff Oceanic Material Transport

Figure: The first 6 stream function EOFs in the top and bottom layer for the coherent jet.

- イロト - 「四ト - 三ト - 三 - シマウ

Comparison of SPDs

Josephine Park and Pavel Berloff Oceanic Material Transport EPSRC Engineering and Physical St Research Council

Comparison of SPDs

(b) Bin 5

Josephine Park and Pavel Berloff Oceanic Material Transport EPSRC Engineering and Physical Sc Research Council

Table of Contents

- Introduction and Motivation
- The Model
- Standard Lagrangian Statistics confirming anisotropic and non-diffusive spreading
- An alternative dispersion measure
- Advecting particles using EOFs

Summary and Further Work

Josephine Park and Pavel Berloff Oceanic Material Transport

Further Work

Could this method produce a more accurate approximation for a diffusivity?

<ロ> < 団> < 団> < 三> < 三> < 三</p>

Further Work

Could this method produce a more accurate approximation for a diffusivity?

Limitations

► The method relies on finding a one-to-one map between *y* and some flow dependent variable.

Further Work

Could this method produce a more accurate approximation for a diffusivity?

Limitations

- The method relies on finding a one-to-one map between y and some flow dependent variable.
- The PV is averaged both temporally and zonally could a sharper map be found?

nar

Further Work

Could this method produce a more accurate approximation for a diffusivity?

Limitations

- The method relies on finding a one-to-one map between y and some flow dependent variable.
- The PV is averaged both temporally and zonally could a sharper map be found?
- This method only applies in the meridional direction of a zonally symmetric flow.

nar

Summary and Further work: EOFs

Summary

The first 6 EOFs seem to do a pretty good job and capturing Eddy-Only zonal dispersion.

Josephine Park and Pavel Berloff Oceanic Material Transport <ロ> < 団> < 団> < 三> < 三> < 三</p>

Summary and Further work: EOFs

Summary

- The first 6 EOFs seem to do a pretty good job and capturing Eddy-Only zonal dispersion.
- They do a poor job of capturing meridional dispersion away from the jet.

Summary and Further work: EOFs

Summary

- The first 6 EOFs seem to do a pretty good job and capturing Eddy-Only zonal dispersion.
- They do a poor job of capturing meridional dispersion away from the jet.
- ► At short time scales, EOFs capture meridional transport in the jet. After this time, the particles perhaps leave the jet region.

Summary and Further work: EOFs

Summary

- ► The first 6 EOFs seem to do a pretty good job and capturing Eddy-Only zonal dispersion.
- They do a poor job of capturing meridional dispersion away from the jet.
- ► At short time scales, EOFs capture meridional transport in the jet. After this time, the particles perhaps leave the jet region.

Further Work

Could the EOFs be used to build a kinematic model? Meridional random noise could be added to the EOFs?

< A

SQR

→ Ξ > < Ξ >

Summary and Further work: EOFs

Summary

- The first 6 EOFs seem to do a pretty good job and capturing Eddy-Only zonal dispersion.
- They do a poor job of capturing meridional dispersion away from the jet.
- ► At short time scales, EOFs capture meridional transport in the jet. After this time, the particles perhaps leave the jet region.

Further Work

Could the EOFs be used to build a kinematic model? Meridional random noise could be added to the EOFs?

< A

SQR

→ Ξ > < Ξ >

Josephine Park and Pavel Berloff

Oceanic Material Transport

🚾 University of 💎 Reading

Thank you for listening.

900

Centre for **Mathematics** Doctoral

eering and Physical Sciences

Further Reading

- Pavel Berloff, James McWilliams and Annalisa Bracco. Material Transport in Oceaniv Gyres. Part I: Phenomenology Journal of Physical Oceonography vol.32, no.3
- Irina Rypina, Igor Kamenkovich, Pavel Berlofff and Lawrence Pratt

Eddy-Induced Particle Dispersion in the Near-Surface North Atlantic

Journal of Physical Oceonography vol.42, no.12

I.H.LaCasce Statistics from Lagrangian observations

Progress in Oceonography, vol.77, no.1

JOC P

