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Motivation

Main focus: Ensemble Data Assimilation

Model Uncertainty due to unresolved sub-grid scale processes

Uncertainty Quantification important for successful DA
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What is Data Assimilation?

Problem Setting:

System states xj evolve according to the following stochastic
difference equation:

xj = M(xj−1) + ηj

ηj is an additive stochastic model error.

Observations of the system are available in the form of:

yj = Hxj + εj

εj ∼ N(0,R)

Aim: estimate p(xj |yj ) (i.e. filtering).

Kalman Filter gives optimal solution for linear M,H and zero mean
time-uncorrelated Gaussian η and ε.
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Aim

Develop method to estimate statistics of η for the following
conditions:

No knowledge of dynamics of fine scale process

Only partial observations of coarse scale process available

Many existing stochastic and deterministic parameterization
techniques not amenable to the above:

e.g. Wilks (2005), Crommelin & Vanden-Eijnden (2008), Kwasniok
(2012), Arnold et al. (2013), Lu et al. (2017)
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Assumptions

1 States are directly but partially observed (i.e. H is a
non-square (0, 1) matrix)

2 Model error ηj depends on some informative variable (e.g.
xj−1 or some reduced form of it)

3 ||εj || << ||ηj ||
4 Error statistics are the same at each point in time and space:

p(ηj [k]|xj−1[k]) = p(ηb[l ]|xb−1[l ]) ∀k, j , b, l
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Proposed Method
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Proposed Method - Error Estimation

At any given time t, aim is to minimise:

J
(
η†t:t+u

)
=

m∑
i=1

1

ni − 1
vT

i CT
i Civi

subject to:

yj = Hxj ∀ j ∈ {t, t + 1, ..., t + u}

(negligible observation error assumption)

where:
xj = M(xj−1) + ηj

η†t:t+u = model errors on unobserved components of xt , ..., xt+u
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Proposed Method - Error Estimation
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Numerical Experiments

Two Layer Lorenz 96:

dXk

dt
= −Xk−1(Xk−2 − Xk+1)− Xk + F +

hx

L

L∑
l=1

Yl ,k ; k ∈ {1, ...,K}

dYl ,k

dt
=

1

ξ
(−Yl+1,k (Yl+2,k − Yl−1,k )− Yl ,k + hyXk ; l ∈ {1, ..., L}

Parameter
Case Study 1 -
large time scale

sep.

Case Study 2 -
small time scale

sep.
ξ 1

128 ≈ 0.008 0.7
hx -0.8 -2
hy 1 1
J 128 20
K 9 9
F 10 14
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Numerical Experiments

Observation Details:

every 2nd Xk is measured

0.02 & 0.04 MTU for Case Study 1 and 2 respectively

R = 10−6I (i.e. negligible)
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Benchmark Method (B1)

Analysis Increment Based Method

ETKF-TV (Mitchell & Carrassi, 2015)

xfi
j = M(xai

j−1)− αηi
j

ηi
j ∼ N(bm,Pm)

where:

α = tuning parameter

bm =
1

N

N∑
j=1

δxa
j

P=
1

N − 1

N∑
j=1

[
δxa

j − bm

] [
δxa

j − bm

]T

δxa
j =

1

n

n∑
i=1

(
xai

j − xfi
j

)
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Benchmark Method (B2)

Long Window Weak Constraint 4d-Var based

Error estimation using Long Window Weak Constraint 4d-Var
(Tremolet, 2006):

J(ηt:t+u) = 1
2

∑t+u
j=t+1 η

T
j Q−1j ηj + 1

2

∑t+u
j=t+1 (Hxj − yj )

T R−1 (Hxj − yj )

where:
xj = M(xj−1) + ηj for j ∈ {t + 1, . . . , t + u}

All other aspects same as proposed approach
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Error Estimation Results - Case Study 1
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Error Estimation Results - Case Study 2
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Why is the conditional minimization approach better?

Figure: Snapshot of JQ values for method B2, proposed and true data for
Case Study 2
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Impact on Assimilation

Data Assimilation setup:

Ensemble Transform Kalman Filter (ETKF)
(Wang & Bishop, 2004)

ensemble size (n) = 1000

observation frequency - as per estimation period

assimilation length - 3000 observation intervals
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One Step ahead forecast densities - Case Study 1
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Forecast Skill
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Summary

Model UQ important for successful DA

Proposed method for quantifying model uncertainty due to
unresolved sub-grid scale processes

Difficult conditions: no knowlege of sub-grid scale dynamics
and partial observations of coarse scale process

Numerical experiments with Lorenz 96 show improved error
estimates and assimilation quality compared to benchmarks

Pathiraja S. Model UQ for DA



Summary

Model UQ important for successful DA

Proposed method for quantifying model uncertainty due to
unresolved sub-grid scale processes

Difficult conditions: no knowlege of sub-grid scale dynamics
and partial observations of coarse scale process

Numerical experiments with Lorenz 96 show improved error
estimates and assimilation quality compared to benchmarks

Pathiraja S. Model UQ for DA



Summary

Model UQ important for successful DA

Proposed method for quantifying model uncertainty due to
unresolved sub-grid scale processes

Difficult conditions: no knowlege of sub-grid scale dynamics
and partial observations of coarse scale process

Numerical experiments with Lorenz 96 show improved error
estimates and assimilation quality compared to benchmarks

Pathiraja S. Model UQ for DA



Summary

Model UQ important for successful DA

Proposed method for quantifying model uncertainty due to
unresolved sub-grid scale processes

Difficult conditions: no knowlege of sub-grid scale dynamics
and partial observations of coarse scale process

Numerical experiments with Lorenz 96 show improved error
estimates and assimilation quality compared to benchmarks

Pathiraja S. Model UQ for DA



Further Work

Non-negligble observation error?

Scalability?
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