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Eddy interfacial form stress
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… and how should we parameterise these fluxes in coarse resolution OGCMs?

Parameterised Resolved

1. Surface wind stress balanced by topographic 
form stress in the Southern Ocean.  
2. Vertical momentum transfer through eddy 
interfacial form stress.  
3. What sets the structure of the stress?

Johnson and Bryden (1989)

Poulsen et al. (2018)

Masich et al. (2015)
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Outline

1. Introduce geometric decomposition of the eddy buoyancy flux and its interpretation 
with respect to eddy-mean flow interaction.    

2. Diagnose geometry in an eddy-resolving ocean model.  
3. Discuss the possibility to parameterise eddy buoyancy fluxes based on the geometric 

decomposition. 



Eddy stress tensor
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Reynolds-averaged quasi-geostrophic momentum equation

The norm of the Eliassen-Palm flux tensor is bounded by the eddy energy E (kinetic 
+ potential) and allow us to rewrite its components in terms of E and a set of 
bounded non-dimensional parameters (Marshall et al. 2012):

This decomposition is related to the geometry of two ellipses! 
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Horizontal ellipse geometry
Reynolds stress ellipse

EEEbt =


�M +K N

N M +K

�

⇤± = K (1± �m) �m =
⇤+ � ⇤�
⇤+ + ⇤�

=

p
M2 +N2

K

Eigenvectors define the orientation of ellipse and eigenvalues the length of the ellipse axes.
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It is possible to express M and N through the ellipse geometry (see e.g. Waterman and Lilly 
(2015)).
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Vertical ellipse geometry
Interfacial form stress ellipsoid
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The intersection between the ellipsoid and a vertical plane along the ellipsoid major axis 
traces out a vertical ellipse which is perpendicular to the eddy buoyancy flux vector. 
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Physical interpretation of 
ellipse geometry

A parameterisation of the eddy geometry is an alternative approach to represent eddy fluxes 
of buoyancy and momentum in coarse resolution ocean models.  



Diagnosing vertical ellipse 
geometry

• Global ocean general circulation model (POP) 
• CORE.v2 normal year forcing fields 
• Active sea ice model 
• 0.1 deg. horizontal resolution 
• 62 vertical levels 
• 15 year spin-up 
• ~25 year control simulation 
• Three-day mean output 
• Offline computation of eddy statistics using 

ten model years

The Reynolds stress ellipse geometry in an eddying ocean model has been examined in the 
recent past (Stewart et al. 2015).

The goal of this study is to diagnose the vertical ellipse geometry in an eddy-
resolving ocean GCM and explore the possibility to parameterise it. 
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Horizontal orientation of 
vertical ellipse

ACC divided into 
segments for 
averaging.

(R,S) tends to be 
perpendicular to 
mean flow.

(R,S) tends to be 
anti-parallel to 
mean-flow.
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or rotational 
component?



Geometric representation of 
eddy interfacial form stress 

• Majority of ellipses lean into 
the shear (downward 
momentum transfer). 

• Eddy energy decreases with 
depth. 

• P > K in upper ocean, P < K 
in abyss.  

• A general weak polarisation 
of eddy buoyancy fluxes.
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Black ellipse leans into the shear  
Blue ellipse leans with the shear



Is it possible to parameterise 
the anisotropy?

The anisotropy is 
depth-insensitive 
in upper ~3km. 
Possible to 
reduce the 
problem from 3D 
to 2D?
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Conclusions

1. Eddy buoyancy flux vector tends to be perpendicular to mean-flow direction below 
1km depth in the Southern Ocean. 

2. Spatially-varying downward momentum transfer throughout the circumpolar path. 
3. The eddy anisotropy is generally weak, but large where topography steers the flow 

and depth-insensitive in the interior ocean. 

We reformulate and interpret eddy buoyancy fluxes in terms of ellipse geometry and explore 
possible ways to parameterise the geometry in OGCMs. 


