

Behaviour of Cloud Models as seen from Asymptotic Analysis

Hamburg 2018

Juliane Rosemeier Peter Spichtinger

Institute for Atmospheric Physics (IPA) Johannes Gutenberg University (JGU) Mainz, Germany

Table of contents

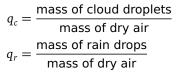
- Motivation
- 2 General Cloud Model
- 3 Asymptotics
- 4 FP Analysis
- 6 Conclusion

- Clouds described by ordinary differential equations
- Derivation from first principles not possible
- Many different parameterisations
- Contain nonlinear terms
- Not clear if long term behaviour is at least similar

How can we compare the behaviour of different cloud models?

Ideas:

- Asymptotic analysis
- ► Theory of dynamical systems

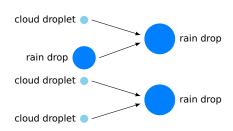

Assumption:

- Parcel model
- Constant environmental conditions
 - temperature, pressure, supersaturation

Modeled quantities:

- Distinguish between cloud droplets and rain drops
- Cloud droplets: small, do not fall
- Rain drops: large, fall due to gravity

Mass concentrations:


General cloud model II

Modeled cloud processes:

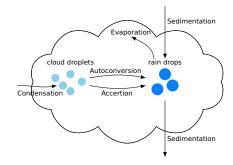
Accretion: collisional process

Autoconversion: collisional process

- Sedimentation: rain drops leave air parcel due to gravity

Special treatment:

- Condensation explicit parameterisation, no saturation adjustment
- Sedimentation



General model for warm clouds III

Model:

$$\begin{aligned} \frac{\mathrm{d}q_c'}{\mathrm{d}t'} &= C - A_1 - A_2\\ \frac{\mathrm{d}q_r'}{\mathrm{d}t'} &= A_1 + A_2 - E + D \end{aligned}$$

Cloud Processes:

- Accretion: $A_1 = a'_1 q'^{\beta_c}_c q'^{\beta_r}_r$
- ► Autoconversion: $A_2 = a_2' q_c'^{\gamma_c}$
- ► Condensation: $C = c'Sq'_c$
- ► Evaporation: $E = e'_1 S q'^{\delta_{r1}}_r + e'_2 S q'^{\delta_{r2}}_r$
- ▶ Sedimentation: $D = -s'q_r'^{\zeta_r} + B'$
- → Cloud models differ by choice of parameters

Cloud models as special cases

Three cloud models

- Wacker: idealized model published by U. Wacker (1992)
- COSMO: warm rain scheme incorporated in COSMO model
- ▶ IFS: warm rain scheme incorporated in IFS model

Linear coefficients pressure $p = 10^5 \,\text{Pa}$, temperature $T = 300 \,\text{K}$

	accretion	autoconversion	evapo	ration	sedimentation	
	a_1'	a_2'	e_1'	e_2'	s'	B'
Wacker	7.5	10^{-4}	0	0	$3.88 \cdot 10^{-3}$	10 ⁻⁷
COSMO	10 ⁻³	1.96	$3.16 \cdot 10^{-5}$	2.96 · 10 ⁻⁴	$1.29 \cdot 10^{-2}$	10-7
IFS	134	$7.45 \cdot 10^{-2}$	$1.79 \cdot 10^{-2}$	$4.47 \cdot 10^{-4}$	$4 \cdot 10^{-3}$	10 ⁻⁷

Exponents

	accr	etion	autoconversion	evap	oration	sedimentation
	β_c	β_r	Ϋ́c	δ_{r1}	δ_{r2}	ζ_r
Wacker	1	1	1	-	-	1
COSMO	1	7/8	1	$\frac{1}{2}$	$\frac{11}{16}$	<u>9</u> 8
IFS	1.15	1.15	2.47	2	0.635	1

Can powers and linear parameters compensate each other?

Cloud models as special cases

Three cloud models

- Wacker: idealized model published by U. Wacker
- COSMO: warm rain scheme incorporated in COSMO model
- ▶ IFS: warm rain scheme incorporated in IFS model

Linear coefficients pressure $p = 10^5 \,\text{Pa}$, temperature $T = 300 \,\text{K}$

	accretion	autoconversion	evapo	ration	sedimentation	
	a_1'	a_2'	e_1'	e_2'	s'	B'
Wacker	7.5	10-4	0	0	$3.88 \cdot 10^{-3}$	10 ⁻⁷
COSMO	10^{-3}	1.96	$3.16 \cdot 10^{-5}$	2.96 · 10 ⁻⁴	$1.29 \cdot 10^{-2}$	10-7
IFS	134	$7.45 \cdot 10^{-2}$	$1.79 \cdot 10^{-2}$	4.47 · 10 ⁻⁴	$4 \cdot 10^{-3}$	10 ⁻⁷

Exponents

	accr	etion	autoconversion	evap	oration	sedimentation
	β_c	β_r	Ϋ́c	δ_{r1}	δ_{r2}	ζ_r
Wacker	1	1	1	-	-	1
COSMO	1	7 8	1	$\frac{1}{2}$	11 16	<u>9</u> 8
IFS	1.15	1.15	2.47	2	0.635	1

Can powers and linear parameters compensate each other?

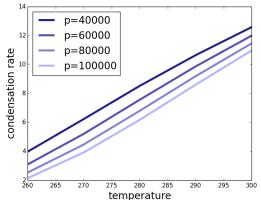
Reference time and reference value:

$$q_{\rm ref} = 1.0 \cdot 10^{-4}$$
 $t_{\rm ref} = 1 \, \text{s}$

Transformation:

$$q_c(t) = q_{ref}q'_c(t')$$
 $q_r(t) = q_{ref}q'_r(t')$ $t = t_{ref}t'$

Compute rescaled derivatives and right hand side (RHS) Reference system with renamed constants:


$$\begin{split} \frac{\mathrm{d}q_c}{\mathrm{d}t} &= cSq_c - a_1q_c^{\beta_c}q_r^{\beta_r} - a_2q_c^{\gamma_c} \\ \frac{\mathrm{d}q_r}{\mathrm{d}t} &= a_1q_c^{\beta_c}q_r^{\beta_r} + a_2q_c^{\gamma_c} - e_1Sq_r^{\delta_{r1}} - e_2Sq_r^{\delta_{r2}} - sq_r^{\zeta} + B \end{split}$$

Due to scaling, we can expect $q_c \approx 1, q_r \approx 1$.

- 1. c, a_1, a_2, e_1, e_2, B expressed in ε powers
- 2. Supersaturation S expressed as $S = \varepsilon^{\alpha}$

Caution: Some parameters depend on temperature and/or pressure!

Behaviour of models on different time scales

Choose the time scale by another time transformation

$$au = \varepsilon^{\omega} t$$
 $q_c^*(\tau) = q_c(t)$ $q_r^*(\tau) = q_r(t)$

Get a system of the form

$$\begin{split} \frac{\mathrm{d}q_{c}^{*}}{\mathrm{d}\tau} &= c^{*}\varepsilon^{\mu}q_{c}^{*} + \dots \\ \frac{\mathrm{d}q_{r}^{*}}{\mathrm{d}\tau} &= a_{1}^{*}\varepsilon^{r}q_{c}^{*\beta_{c}}q_{r}^{*\beta_{r}} + \dots \end{split}$$

with $c^*, a_1^*, \dots \in \mathcal{O}(1)$. We choose the ansatz:

$$q_c^* = q_c^{*(0)} + \varepsilon q_c^{*(1)} + \varepsilon^2 q_r^{*(2)} + \dots, \quad q_r^* = q_r^{*(0)} + \varepsilon q_r^{*(1)} + \varepsilon^2 q_r^{*(2)} + \dots$$

- Ansatz is plugged in RHS of above model
- Its derivative on the left hand side
- \blacktriangleright Order the ε powers

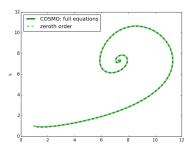
Asymptotic investigations - Reduced Models II

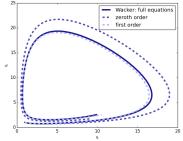
- ▶ Supersaturation corresponding to $\alpha = 3$ (S = 0.1%)
- ▶ Time scale of $\tau = \varepsilon^3 t$ (1000 seconds)

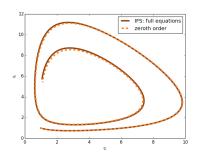
Order of processes

	Wacker	COSMO	IFS
accretion	$\mathscr{O}(1)$	$\mathscr{O}(1)$	$\mathscr{O}(1)$
autoconversion	$\mathscr{O}(arepsilon)$	∅ (1)	$\mathscr{O}(\varepsilon^3)$
condensation	$\mathscr{O}(1)$	$\mathscr{O}(1)$	$\mathcal{O}(1)$
evaporation	-	$\mathscr{O}(\varepsilon^3)$	$\mathscr{O}\!\left(arepsilon^2 ight)$
sedimentation	$\mathscr{O}(1)$	$\mathscr{O}(1)$	$\mathcal{O}(1)$

- Accretion, condensation, sedimentation are comparable
- Autoconversion varies with model
- Evaporation of minor importance




	leading order equation
Wacker	$\dot{q}_c^{(0)} = cq_c^{(0)} - a_1 q_c^{(0)} q_r^{(0)}$ $\dot{q}_r^{(0)} = a_1 q_c^{(0)} q_r^{(0)} - sq_r^{(0)} + B$
COSMO	$\dot{q}_{c}^{(0)} = cq_{c}^{(0)} - a_{1}q_{c}^{(0)}q_{r}^{(0)\frac{7}{8}} - a_{2}q_{c}^{(0)}$ $\dot{q}_{r}^{(0)} = a_{1}q_{c}^{(0)}q_{r}^{(0)\frac{7}{8}} + a_{2}q_{c}^{(0)} - sq_{r}^{(0)\frac{9}{8}} + B$
IFS	$\dot{q}_c^{(0)} = cq_c^{(0)} - a_1 q_c^{(0)1.15} q_r^{(0)1.15}$ $\dot{q}_r^{(0)} = a_1 q_c^{(0)1.15} q_r^{(0)1.15} - sq_r^{(0)} + B$


- Condensation, accretion, sedimentation on same time scale
- Discrepancy concerning time scale of autoconversion
- Predator-prey system with constant forcing

Reduced Models IV

► First order approximation:

$$q_c \approx q_c^{(0)} + \varepsilon q_c^{(1)}$$
$$q_r \approx q_r^{(0)} + \varepsilon q_r^{(1)}$$

 First order approximation of Wacker model is bad for large time scales

Asymptotic investigations - Reduced Models V

- ▶ Keep supersaturation corresponding to $\alpha = 3$ (S = 0.1%)
- ► Change time scale and choose $\tau = \varepsilon^2 t$ (100 seconds)

	Wacker	COSMO	IFS
accretion	$\mathscr{O}(arepsilon)$	$\mathscr{O}(arepsilon)$	$\mathscr{O}(arepsilon)$
autoconversion	$\mathscr{O}\!\left(arepsilon^2 ight)$	$\mathscr{O}(arepsilon)$	$\mathscr{O}(\varepsilon^4)$
condensation	$\mathscr{O}(arepsilon)$	$\mathscr{O}(arepsilon)$	$\mathscr{O}(arepsilon)$
evaporation	-	$\mathscr{O}(\varepsilon^4)$	$\mathscr{O}(\varepsilon^3)$
sedimentation	$\mathscr{O}(arepsilon)$	$\mathscr{O}(arepsilon)$	$\mathscr{O}(arepsilon)$

System scales linearly in time

	zeroth order equation
Wacker	$\dot{q}_c^{(0)} = 0 \\ \dot{q}_r^{(0)} = 0$
COSMO	$\dot{q}_c^{(0)} = 0 \\ \dot{q}_r^{(0)} = 0$
IFS	$\dot{q}_c^{(0)} = 0 \\ \dot{q}_r^{(0)} = 0$

- Constant solutions in leading order
- → Inital value is reproduced
 - Time scale small, cloud microphysics has not yet started
 - No valid long term solution

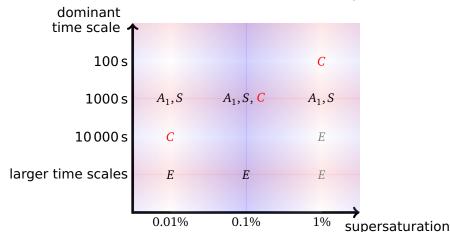
	first order equation
Wacker	$\dot{q}_c^{(1)} = cq_c^{(0)} - a_1 q_c^{(0)} q_r^{(0)}$ $\dot{q}_r^{(1)} = a_1 q_c^{(0)} q_r^{(0)} - sq_r^{(0)} + B$
COSMO	$\begin{aligned} \dot{q}_c^{(1)} &= cq_c^{(0)} - a_1q_c^{(0)}q_r^{(0)\frac{7}{8}} - a_2q_c^{(0)} \\ \dot{q}_r^{(1)} &= a_1q_c^{(0)}q_r^{(0)\frac{7}{8}} + a_2q_c^{(0)} - sq_r^{(0)\frac{9}{8}} + B \end{aligned}$
IFS	$\dot{q}_c^{(1)} = cq_c^{(0)} - a_1q_c^{(0)1.15}q_r^{(0)1.15}$ $\dot{q}_r^{(1)} = a_1q_c^{(0)1.15}q_r^{(0)1.15} - sq_r^{(0)} + B$

- ► Changes in first order
- ▶ Structure of predator-prey system with constant forcing, but $q_c^{(0)} \equiv {\rm const}, q_r^{(0)} \equiv {\rm const}$
- Polynomial of degree 1 as first order approximation

- ▶ Increase supersaturation to $\alpha = 2$ (S = 1%)
- ► Keep small time scale of $\tau = \varepsilon^2 t$ (100 seconds)

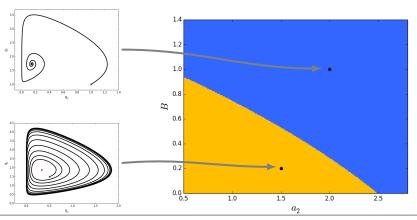
	Wacker	COSMO	IFS
accretion	$\mathscr{O}(arepsilon)$	$\mathscr{O}(arepsilon)$	$\mathscr{O}(arepsilon)$
autoconversion	$\mathscr{O}\!\left(arepsilon^2 ight)$	$\mathscr{O}(arepsilon)$	$\mathscr{O}\!\left(arepsilon^4 ight)$
condensation	$\mathscr{O}(1)$	$\mathscr{O}(1)$	$\mathcal{O}(1)$
evaporation	-	$\mathscr{O}(\varepsilon^3)$	$\mathscr{O}\!\left(arepsilon^2 ight)$
sedimentation	$\mathscr{O}(arepsilon)$	$\mathscr{O}(arepsilon)$	$\mathscr{O}(arepsilon)$

- ► Condensation and evaporation scale linearly in S
- Condensation dominates all processes



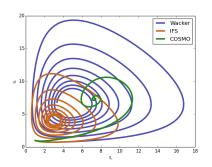
	leading order equation
Wacker	$\dot{q}_c^{(0)} = cq_c^{(0)}$ $\dot{q}_r^{(0)} = 0$
Wacker	$\dot{q}_r^{(0)} = 0$
COSMO	$\dot{q}_c^{(0)} = c q_c^{(0)}$
COSMO	$\dot{q}_r^{(0)} = 0$
IEC	$\dot{q}_c^{(0)} = cq_c^{(0)}$
IFS	$\dot{q}_r^{(0)} = 0$

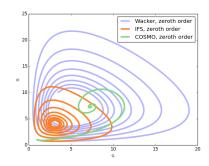
- Condensation is the only process with an impact on the chosen time scale
- Constant solution for q_r
- Exponential solution for q_c
- → Not realistic for large time


- Assumption: clouds are almost in dynamic equilibirium
- → Fixed points of cloud models represent cloud
- ▶ Usually one fixed point for $q_c = 0$
 - Wacker: $q_c = 0, q_r = 3.88$
 - Unstable if supersaturation is large enough
 - → Interpretation: rain falls through, cloud develops (unstable)
- Usually one further fixed point relevant for describing clouds
 - Wacker: $q_c = 4.87, q_r = 6.53$
- Stability behaviour depends on parameters
- Possibly many fixed points in general cloud model (due to modeling with fractional powers)

Stable fixed points represent the cloud as $t \to +\infty$. Asymptotic analysis enables to look at specific time scales.

Bifurcations




- Bifurcations can be detected in the general cloud model
- \triangleright Example below: all parameters except B and a_2 are fixed
- → Autoconversion important for bifurcating behaviour

- ► Consider relevant fixed point $q_c \neq 0$, S = 0.1%, time scale 1000s
- For nondimensionalized Wacker, COSMO, IFS:
- → stable fixed points
- Different time scales for approaching fixed point
- → Wacker, IFS close to bifurcation
- → Possible periodic feedback to coupled systems

Motivation

COSMO and IFS

- Models used operationally
- Both models have a fixed points of order 10⁻⁴
- COSMO reaches fixed point on time scale of 1000s
- IFS reaches fixed point on larger time scale
- → Many cycles around fixed point
- → Possible periodic feedback to coupled system
- Zeroth order is good approximation for considered case

Conclusion - Asymptotic investigations

- Two options for adjusting the leading order system:
 - time
 - supersaturation
- All processes scale linearly in time
- Condensation, evaporation scale scale linearly with supersaturation
- Time scale of minutes for realistic supersaturations
- Similar models with regard to time scale of cloud processes
- However: Impact of autoconversion depends on model

Conclusion - Fixed point analysis

- ▶ One fixed point for $q_c = 0$
 - Unstable due to supersaturation
- Usually one other relevant fixed point describing clouds
- Stable for considered cloud models
- In general stability behaviour depends on parameters
 - Bifurcations possible
 - Also determined by autoconversion
 - Periodic and almost periodic solutions possible
 - In operationally used cloud models: non periodic and almost periodic cloud models
- Can resonances occur?

Thank you for your attention!

References

Backupfolie

Mitgedacht

Hier stehen die Antworten auf die Fragen.