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Reactive tracers in environmental flows
I Reactive tracers can propagate much more rapidly than a

passive tracer in the same environment.
I Often in the form of localized, strongly inhomogeneous

structures associated with reactive fronts.

Phytoplankton bloom off the coast of Alaska (NASA’s Goddard Space, Sept. 22, 2014).
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Reactive fronts in environmental flows
I Classic example of reactive front: the Fisher-Kolmogorov

travelling-wave.
I Employed to explain observations of the spread of a

phytoplankton in the North Sea for a weak surface flow.
137A.P. Martin / Progress in Oceanography 57 (2003) 125–174

Fig. 4. Observational data with corresponding computer simulation showing a possible plankton travelling wave in the North Sea.

The model results are shown for times (a) 17 days and (b) 20 days after an initial perturbation. The model consists of two variables:

phytoplankton (N1) and herbivorous zooplankton (N2). Note how the zooplankton give rise to a ring-shaped phytopalntkon distribution

by day 20 through heavily grazing the trailing edge of the phytoplankton wave. (c) and (d), show the observed distribution of the

phytoplankton species Oikopleura dioica consecutively mapped by Wyatt (1973) in the Southern Bight of the North Sea at two

different times. Note once again the ring-shaped distribution of the phytoplankton that develops as they spread outwards. Sadly,

equivalent zooplankton data is not available to definitely attribute the cause to grazing as in the model. All plots are reprinted from

Mémoires de la Société Royal des Sciences de Liège Series 6, 7, D.M.Dubois, Simulation of the spatial structuration of a patch of

prey-predator plankton populations in the Southern Bight of the North Sea, pp. 75–82, Copyright (1975) with permission of the

publishers. The difference in time for data in (c) and (d) is not given in the paper from which the plots are taken.

is a property of some non-linear systems whereby perturbations to the stable state exceeding some threshold

result in large-amplitude, long-lasting transients. Such behaviour alone can generate patchiness

(Matthews & Brindley, 1997). More pertinent to this review, in the presence of diffusion excitable media

can exhibit transient travelling waves (cf. Murray, 1993). Although not applied specifically to marine
plankton, theoretical research has shown that simple shear flows can disrupt the propagation of excited
waves resulting in complex spatial patterns (Biktashev, Holden, Tsyganov, Brindley, & Hill, 1998; Bikta-

shev et al., 1999). A more realistic scenario for the marine environment involves the distortion of excited

waves by stirring flows. For gentle stirring, the waves may be stretched out and folded until they fill a
region (Neufeld, 2001; Neufeld et al., 2002a), whilst strong stirring can damp waves and prevent pattern

formation (Neufeld, 2001). A note of caution is warranted though. The occurrence of excitable behaviour

in plankton ecosystem models depends strongly on the functional forms used to mathematically represent

Wyatt (1973), Martin (2003)
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Reactive fronts in the absence of a flow
Reaction-diffusion with Fisher-Kolmogorov nonlinearity

∂tθ(x , t) = κ∆θ(x , t) +
1

τ
θ(1− θ), θ(x , 0) =

{
1 if x ≥ 0

0 if x < 0.

θ(x , t) = 0 is an unstable solution (growth)

θ(x , t) = 1 is a stable solution (saturation)

1
10

0.
1

κ=
1τ

Saturday, 9 November 13

θ(x , t) = 0θ(x , t) = 1

κ1

τ
10

1
0.

1



Reactive fronts in Flows The large-t limit Fast reactions Conclusions

Reactive fronts in the absence of a flow
Reaction-diffusion with Fisher-Kolmogorov nonlinearity

∂tθ(x , t) = κ∆θ(x , t) +
1

τ
θ(1− θ), θ(x , 0) =

{
1 if x ≥ 0

0 if x < 0.

θ(x , t) = 0 is an unstable solution (growth)

θ(x , t) = 1 is a stable solution (saturation)

1
10

0.
1

κ=
1τ

Saturday, 9 November 13

θ(x , t) = 0θ(x , t) = 1

κ1

τ
10

1
0.

1



Reactive fronts in Flows The large-t limit Fast reactions Conclusions

Reactive fronts in the absence of a flow
Reaction-diffusion with Fisher-Kolmogorov nonlinearity

∂tθ(x , t) = κ∆θ(x , t) +
1

τ
θ(1− θ), θ(x , 0) =

{
1 if x ≥ 0

0 if x < 0.

θ(x , t) = 0 is an unstable solution (growth)

θ(x , t) = 1 is a stable solution (saturation)

At large times, a front is established:

θ(x , t)→ Θ(x − c0t), when t � 1.

1
10

0.
1

κ=
1τ

Saturday, 9 November 13

θ(x , t) = 0θ(x , t) = 1

κ1

τ
10

1
0.

1



Reactive fronts in Flows The large-t limit Fast reactions Conclusions

Reactive fronts in the absence of a flow
Reaction-diffusion with Fisher-Kolmogorov nonlinearity

∂tθ(x , t) = κ∆θ(x , t) +
1

τ
θ(1− θ), θ(x , 0) =

{
1 if x ≥ 0

0 if x < 0.

θ(x , t) = 0 is an unstable solution (growth)

θ(x , t) = 1 is a stable solution (saturation)

1
10

0.
1

κ=
1τ

Saturday, 9 November 13

θ(x , t) = 0θ(x , t) = 1

κ1
τ

10
1

0.
1



Reactive fronts in Flows The large-t limit Fast reactions Conclusions

Reactive fronts in shear and cellular flows
Reaction-diffusion-advection with Fisher-Kolmogorov nonlinearity

∂tθ(x , t) + u(x) · ∇θ(x , t) = Pe−1∆θ(x , t) + Da θ(1− θ)

where
Pe = V `/κ and Da = `/V τ

and u = (u(y), 0) or

u = ∇⊥ψ with ψ = −Uy − sin(x) sin(y)

in a channel geometry (analysis for unbounded 2D domain is
similar)
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Reactive fronts in shear and cellular flows
At large times, a pulsating front is established:

θ(x , y , t)→ Θ(x − ct, x , y), when t � 1.

where Θ is 2π-periodic in the second variable. Berestycki & Hamel (2002)

Examples obtained for varying Da, Pe = 250 and U = 0

 

 

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Monday, 6 October 14

Da = 4 × 10−2 Da = 4 × 10−1 Da = 4

What is the front speed c as a function of Pe and Da?
(when Pe� 1)



Reactive fronts in Flows The large-t limit Fast reactions Conclusions

Reactive fronts in shear and cellular flows
At large times, a pulsating front is established:

θ(x , y , t)→ Θ(x − ct, x , y), when t � 1.

where Θ is 2π-periodic in the second variable. Berestycki & Hamel (2002)

Examples obtained for varying Da, Pe = 250 and U = 0

 

 

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Monday, 6 October 14

 

 

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Monday, 6 October 14

Da = 4 × 10−2 Da = 4 × 10−1 Da = 4

What is the front speed c as a function of Pe and Da?
(when Pe� 1)



Reactive fronts in Flows The large-t limit Fast reactions Conclusions

Reactive fronts in shear and cellular flows
At large times, a pulsating front is established:

θ(x , y , t)→ Θ(x − ct, x , y), when t � 1.

where Θ is 2π-periodic in the second variable. Berestycki & Hamel (2002)

Examples obtained for varying Da, Pe = 250 and U = 0

 

 

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Monday, 6 October 14

 

 

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Monday, 6 October 14

Da = 4 × 10−2 Da = 4 × 10−1 Da = 4

What is the front speed c as a function of Pe and Da?
(when Pe� 1)



Reactive fronts in Flows The large-t limit Fast reactions Conclusions

Reactive fronts in shear and cellular flows
At large times, a pulsating front is established:

θ(x , y , t)→ Θ(x − ct, x , y), when t � 1.

where Θ is 2π-periodic in the second variable. Berestycki & Hamel (2002)

Examples obtained for varying Da, Pe = 250 and U = 0

 

 

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Monday, 6 October 14

Da = 4 × 10−2 Da = 4 × 10−1 Da = 4

What is the front speed c as a function of Pe and Da?
(when Pe� 1)



Reactive fronts in Flows The large-t limit Fast reactions Conclusions

Reactive fronts in shear and cellular flows
At large times, a pulsating front is established:

θ(x , y , t)→ Θ(x − ct, x , y), when t � 1.

where Θ is 2π-periodic in the second variable. Berestycki & Hamel (2002)

Examples obtained for varying Da, Pe = 250 and U = 0

 

 

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Monday, 6 October 14

Da = 4 × 10−2 Da = 4 × 10−1 Da = 4

What is the front speed c as a function of Pe and Da?
(when Pe� 1)



Reactive fronts in Flows The large-t limit Fast reactions Conclusions

Multiscale methods
Focus on advection-diffusion only:

∂tθ(x , t) + u(x) · ∇θ(x , t) = Pe−1∆θ(x , t).

For t � 1, the bulk behaviour is diffusive:

∂tθ(x , t) + U∂xθ = κeff ∂
2
xθ(x , t),

where the effective diffusivity κeff depends on u.

For sudden localised release, predicts Gaussian concentration:

θ(x , t) ∼ e−(x−Ut)2/(4κefft).

I Accurate for |x − Ut| = O(t1/2).
I Fails in the tails, |x − Ut| � O(t1/2).
I Can capture the tails |x − Ut| = O(t) using large deviations:

θ(x , t) ∼ e−tg(x/t).

(see Haynes & Vanneste (2014i,ii))
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The eigenvalue problem for the speed

Put back reactions: Linearising around the tip of the front, θ ≈ 0

∂tθ(x , t) + u(x) · ∇θ(x , t) = Pe−1∆θ(x , t) + Da θ

//////

(1− θ).

For t � 1 we employ the large-deviation form for the passive
tracer:

θ(x , t) ≈ e−t(g(c)−Da )φ(x , y) where c =
x

t
= O(1)

=

{
∞, for c < g−1(Da)

0, for c > g−1(Da)

The front speed is given by c = g−1(Da).

(see Gärtner & Friedlin (1979))
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The eigenvalue problem for the speed

We solve for g(c) via an eigenvalue equation

f (q)φ = Pe−1∆φ− (u1, u2) · ∇φ− 2Pe−1q∂xφ+ (u1q +Pe−1q2)φ,

where f is the Legendre transform of g

g(c) = sup
q>0

(qc − f (q)),

and φ(x , y) is 2π-periodic in x with ∂yφ = 0 at y = 0, 1.

For u = 0, f (q) = Pe−1q2 which recovers classic result

c0 = 2
√

Da/Pe = 2
√
κ/τ.
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Example: Pe = 250, U = 0
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Near the origin, effective diffusivity approximation applies:

g(c) ≈
√
Pe

4
c2

Childress (1979), Shraiman (1987), Soward (1987)

Away from the origin, reduced models using matched asymptotics
Haynes & Vanneste (2014), Tzella & Vanneste (2015)
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Da = O(Pe), c = C (Da/Pe)
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In the limit of small molecular diffusivity and fast reaction i.e.,
when

Pe, Da� 1, Da/Pe = c2
0/4 = O(1),

the solution to

∂tθ + u · ∇θ = Pe−1 ∆θ + Da θ.

can be approximated using a WKB approximation:

θ(x , t) ∼ e−PeI (x ,t,c0)

∼ e−Pe t (G (c)−c2
0 )/4 for t � 1.
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Da = O(Pe), c = C (Da/Pe)
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At leading order, we obtain

∂tI +H (∇I , x , c0) = 0 with H (p, x , c0) = |p|2+u(x)·p+c2
0/4

where I (x , y , 0) = 0 for x ≤ 0 and ∞ otherwise.

The front interface is given by

I (x , t, c0) = 0.
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Variational formulation for the speed

The solution to the Hamilton–Jacobi equation is given by

I (x ,T , c0) =
1

4

(
inf
X (·)

∫ T

0
|Ẋ (t)− u(X (t))|2 dt − c2

0T

)
,

subject to X (0) = (0, ·), X (T ) = x .

For T � 1, the front propagates at the constant speed c obtained
from

G (c) = lim
T→∞

1

T
inf
X (·)

∫ T

0
|Ẋ (t)− u(X (t))|2 dt

subject to X (0) = (0, ·), X (T ) = (cT , y).

where the dependence on the specific value of y is dropped.
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Variational formulation for the speed

Taking T = nτ ,

G (c) =
1

τ
inf
X (·)

∫ τ

0
|Ẋ (t)− u(X (t))|2 dt,

subject to X (τ) = X (0) + (2π, 0)

and use G (c) = c2
0 .

Alternatively,

c =
2π

τ
, where τ = inf

X (·)
τ with X (τ) = X (0) + (2π, 0)

subject to
1

τ

∫ τ

0
|Ẋ (t)− u(X (t))|2dt = c2

0 .
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Cellular flow (U = 0): Trajectories

Figure: Minimising periodic trajectories calculated numerically for
c0 = 0.1, c0 = 1 and c0 = 10. They become closer to the straight line
y = π/2 as c0 increases.
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Cellular flow (U = 0): Speed
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Figure: Comparison between asymptotic and numerical results of the
front speed c when Da = O(Pe) for various values of Pe� 1.
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Cellular flow (U 6= 0): Trajectories

(a) A = 0.5, U = 0 (b) A = 1, U = 0

(c) A = 0, U = 0.1 (d) A = 0, U = 0.5

Figure: Effect of small-scale perturbations and a mean flow.
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Conclusions

I Large deviation theory is a neat way to obtain the front speed
in periodic flows:
Letting θ � exp[−t(g(x/t)−Da)] gives:

c = g−1(Da),

where the rate function g is calculated by solving an
eigenvalue problem.

I When the reactions are (very) weak, effective diffusivity may
be used to approximate the front speed.

I When the reactions are strong, the front speed may be
expressed in terms of periodic trajectories that minimise the
time of travel across a period of the flow.
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Outlook

I Geophysical flows.

I Other plankton ecosystems.

Thank you for your attention!

Tzella & Vanneste (2014) Phys. Rev. E 90, 011001(R);

Tzella & Vanneste (2015) SIAM J. Appl. Math, 75(4), 1789-1816;
Tzella & Vanneste (2018) in prep.
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Cellular flow (U 6= 0): Speed
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Figure: The difference between c and U, as a function of the bare speed
c0 for (left) various values of A with U = 0 and (right) various values of
U with A = 0.
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