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Reactive tracers in environmental flows

> Reactive tracers can propagate much more rapidly than a
passive tracer in the same environment.

» Often in the form of localized, strongly inhomogeneous
structures associated with reactive fronts.

Phytoplankton bloom off the coast of Alaska (NASA's Goddard Space, Sept. 22, 2014).
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Reactive fronts in environmental flows

» Classic example of reactive front: the Fisher-Kolmogorov
travelling-wave.

» Employed to explain observations of the spread of a
phytoplankton in the North Sea for a weak surface flow.
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Reactive fronts in the absence of a flow
Reaction-diffusion with Fisher-Kolmogorov nonlinearity
1 ifx>0

0:0(x, t) = KAO(x, £) + 2 0(1—0), O(x,0) = { !
T 0 ifx<DO.
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Reactive fronts in the absence of a flow
Reaction-diffusion with Fisher-Kolmogorov nonlinearity

1 1 ifx>0
0:0(x,t) = kAO(x,t) + = 6(1 —0), 6(x,0)= I x>
T 0 ifx<O.
6(x,t) = 0 isan unstable solution (growth)

O(x,t) = 1 s a stable solution (saturation)
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Reactive fronts in the absence of a flow
Reaction-diffusion with Fisher-Kolmogorov nonlinearity

1 1 ifx>0
9:0(x,t) = kA(x,t) + (1 — ), 6(x,00=4 =
T 0 ifx<0.
O(x,t) = 0 is an unstable solution (growth)
O(x,t) = 1 s a stable solution (saturation)

At large times, a front is established:

0(x,t) = O(x — cot), when t > 1.
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Reactive fronts in the absence of a flow
Reaction-diffusion with Fisher-Kolmogorov nonlinearity

1 1 ifx>0
9:0(x,t) = kA(x,t) + (1 — ), 6(x,00=4 =
T 0 ifx<0.
O(x,t) = 0 is an unstable solution (growth)
O(x,t) = 1 s a stable solution (saturation)

-
Sl6(x,t) =1 O(x,t) =0
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Reactive fronts in shear and cellular flows
Reaction-diffusion-advection with Fisher-Kolmogorov nonlinearity

d:0(x, t) + u(x) - VO(x, t) = Pe " Af(x, t) + Dabd(1 — 0)
where
Pe=V//k and Da=/{/VT
and u = (u(y),0) or
u=vV=+ty with ¢ =—Uy— sin(x) sin(y)

in a channel geometry (analysis for unbounded 2D domain is
similar)
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Reactive fronts in shear and cellular flows
Reaction-diffusion-advection with Fisher-Kolmogorov nonlinearity

0:0(x, t) + u(x) - VO(x, t) = Pe 1 Af(x, t) + Dabd(1 — 6)
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Reactive fronts in shear and cellular flows
At large times, a pulsating front is established:

O(x,y,t) = O(x — ct,x,y), whent>1.

where © is 27-periodic in the second variable. Berestycki & Hamel (2002)
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Reactive fronts in shear and cellular flows
At large times, a pulsating front is established:
O(x,y,t) = O(x — ct,x,y), whent>1.

where © is 27-periodic in the second variable. Berestycki & Hamel (2002)

Examples obtained for varying Da, Pe = 250 and U =0
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Reactive fronts in shear and cellular flows
At large times, a pulsating front is established:

O(x,y,t) = O(x — ct,x,y), whent>1.

where © is 27-periodic in the second variable. Berestycki & Hamel (2002)

Examples obtained for varying Da, Pe = 250 and U =0
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Reactive fronts in shear and cellular flows
At large times, a pulsating front is established:

O(x,y,t) = O(x — ct,x,y), whent>1.

where © is 2m-periodic in the second variable. Berestycki & Hamel (2002)

Examples obtained for varying Da, Pe = 250 and U =0
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Reactive fronts in shear and cellular flows
At large times, a pulsating front is established:

O(x,y,t) = O(x — ct,x,y), whent>1.

where © is 2m-periodic in the second variable. Berestycki & Hamel (2002)

Examples obtained for varying Da, Pe = 250 and U =0
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What is the front speed ¢ as a function of Pe and Da?
(when Pe > 1)
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Multiscale methods
Focus on advection-diffusion only:
r0(x, t) + u(x) - VO(x, t) = Pe 1 Af(x, t).
For t > 1, the bulk behaviour is diffusive:
Ot0(x, t) + UdxO = ke 020(x, t),

where the effective diffusivity xef depends on u.
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Multiscale methods
Focus on advection-diffusion only:
r0(x, t) + u(x) - VO(x, t) = Pe 1 Af(x, t).
For t > 1, the bulk behaviour is diffusive:
Ot0(x, t) + UdxO = ke 020(x, t),
where the effective diffusivity xef depends on u.

For sudden localised release, predicts Gaussian concentration:

0(x, t) ~ e_(X_Ut)Q/(“'“efft)'

» Accurate for [x — Ut| = O(t'/?).
» Fails in the tails, |x — Ut| > O(t'/?).
» Can capture the tails |[x — Ut| = O(t) using large deviations:

O(x, t) ~ e~ 8K/,

(see Haynes & Vanneste (2014i,ii))



Reactive fronts in Flows The large-t limit Fast reactions Conclusions
00000 0e00 0000000

The eigenvalue problem for the speed

Put back reactions: Linearising around the tip of the front, 8 ~ 0

D:0(x, t) + u(x) - VO(x, t) = Pe L Al(x, t) + Dab(1 — 6).
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The eigenvalue problem for the speed

Put back reactions: Linearising around the tip of the front, 8 ~ 0
Oe0(x, t) + u(x) - VO(x, t) = Pe LAO(x, t) + Da bV / p).

For t > 1 we employ the large-deviation form for the passive
tracer:

O(x,t) ~ e &) =Da)y(x ) where c = % =0(1)

e
o0, for c < g~1(Da)
0, forc> g 1(Da)
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The eigenvalue problem for the speed

Put back reactions: Linearising around the tip of the front, 8 ~ 0
Oe0(x, t) + u(x) - VO(x, t) = Pe LAO(x, t) + Da bV / p).

For t > 1 we employ the large-deviation form for the passive
tracer:

O(x,t) ~ e &) =Da)y(x ) where c = % =0(1)

~ Joo, forc < g7!(Da)
10, forc> g 1(Da)

The front speed is given by ¢ = g~ 1(Da).

(see Gartner & Friedlin (1979))
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The eigenvalue problem for the speed

We solve for g(c) via an eigenvalue equation
f(a)¢ = Pe™ Ad — (u1, u) - Vo — 2Pe™ q0xp + (u1q + Pe ™ ¢%),

where f is the Legendre transform of g

g(c) = jig(qc - f(q)),

and ¢(x, y) is 2m-periodic in x with d,¢ =0 at y =0, 1.
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The eigenvalue problem for the speed

We solve for g(c) via an eigenvalue equation
f(q)p = Pe ' A¢— (u1, tp) - Vo — 2Pe 1 q0x¢ + (u1q + Pe1q%) o,
where f is the Legendre transform of g

g(c) = Zig(qc - f(q)),

and ¢(x, y) is 2m-periodic in x with d,¢ =0 at y =0, 1.

For u =0, f(q) = Pe~1g? which recovers classic result

¢ = 2y/Da/Pe = 2+/k/T.
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Example: Pe =250, U =0

Near the origin, effective diffusivity approximation applies:

v Pe
g(c) = TCZ

Childress (1979), Shraiman (1987), Soward (1987)
Away from the origin, reduced models using matched asymptotics

Haynes & Vanneste (2014), Tzella & Vanneste (2015)
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Example: Pe =250, U =0

Near the origin, effective diffusivity approximation applies:

v Pe
g(c) = TCZ

Childress (1979), Shraiman (1987), Soward (1987)
Away from the origin, reduced models using matched asymptotics

Haynes & Vanneste (2014), Tzella & Vanneste (2015)
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Da = O(Pe), ¢ = ¥(Da/Pe)

In the limit of small molecular diffusivity and fast reaction i.e.,

when

Pe, Da>>1, Da/Pe=c3/4= 0(1),
the solution to
0t0 + u - VO =Pe ' A + Dad.
can be approximated using a WKB approximation:

Q(X, t) ~ efPeJ(x,t,co)

~ e Pet@()=D)/* for £ 1.



Fast reactions
0@00000

Da = O(Pe), ¢ = ¢ (Da/Pe)

At leading order, we obtain

I+ H (VI x,c0) =0 with J(p,x, ) = |p|*+u(x)-p+c3/4

where 7 (x,y,0) = 0 for x < 0 and oo otherwise.

The front interface is given by

F(x,t,c0) =0.
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Variational formulation for the speed

The solution to the Hamilton—Jacobi equation is given by

T .
S(x, T, o) = % (inf /0 X () — u(X(£)? dt — ch> ,

X()
subject to X(0) = (0,-), X(T)=x.
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Variational formulation for the speed

The solution to the Hamilton—Jacobi equation is given by
L/ Ty 2 2
F(x,T,qn) == | inf |X(t) — u(X(t)|“dt — 5T ),
4 \x()Jo
subject to X(0) = (0,-), X(T)=x.

For T > 1, the front propagates at the constant speed ¢ obtained
from

.
9(6) = Jim 7 inf [ 1%(0) — u(X(0)P e

subject to X(0) = (0,-), X(T)=(cT,y).

where the dependence on the specific value of y is dropped.
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Variational formulation for the speed
Taking T = nr,
_1 mf/ X(8) — u(X()]2 dt,
subject to X(7) = X(0) + (27,0)

and use (c) = 3.
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Variational formulation for the speed

Taking T = nr,

_1 mf / IX(8) — u(X(0) P dt,
subject to X(7) = X(0) + (27,0)
and use (c) = 3.

Alternatively,

2
c= —W, where 7= )i(n(f)T with X(7) = X(0) + (2, 0)
T .

1 /7.
subject to / X(£) — u(X(£))2dt = 2.
T Jo
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Cellular flow (U = 0): Trajectories

-7 0 ™
T
Figure: Minimising periodic trajectories calculated numerically for

co=0.1, co =1 and ¢g = 10. They become closer to the straight line
y = 7/2 as ¢ increases.
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Cellular flow (U = 0): Speed

1.5

v Pe=50
Pe=125

<1 Pe=250

> Pe=500
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Figure: Comparison between asymptotic and numerical results of the
front speed ¢ when Da = O(Pe) for various values of Pe > 1.

Conclusions
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Cellular flow (U # 0): Trajectories
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Figure: Effect of small-scale perturbations and a mean flow.
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Conclusions

» Large deviation theory is a neat way to obtain the front speed
in periodic flows:
Letting 0 =< exp[—t(g(x/t) — Da)]| gives:

c= g_l(Da),

where the rate function g is calculated by solving an
eigenvalue problem.

» When the reactions are (very) weak, effective diffusivity may
be used to approximate the front speed.

» When the reactions are strong, the front speed may be
expressed in terms of periodic trajectories that minimise the
time of travel across a period of the flow.
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Outlook

» Geophysical flows.

» Other plankton ecosystems.

Thank you for your attention!

Tzella & Vanneste (2014) Phys. Rev. E 90, 011001(R);
Tzella & Vanneste (2015) SIAM J. Appl. Math, 75(4), 1789-1816;
Tzella & Vanneste (2018) in prep.
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Cellular flow (U # 0): Speed
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Figure: The difference between ¢ and U, as a function of the bare speed
o for (left) various values of A with U = 0 and (right) various values of
U with A=0.
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