The large-*t* limit

Fast reactions

Conclusions

Reactive front propagation in periodic flows for fast reaction and small diffusivity

Alexandra Tzella University of Birmingham

with Jacques Vanneste, University of Edinburgh

Reactive tracers in environmental flows

- Reactive tracers can propagate much more rapidly than a passive tracer in the same environment.
- Often in the form of localized, strongly inhomogeneous structures associated with reactive fronts.

Phytoplankton bloom off the coast of Alaska (NASA's Goddard Space, Sept. 22, 2014).

Reactive fronts in environmental flows

- Classic example of reactive front: the Fisher-Kolmogorov travelling-wave.
- Employed to explain observations of the spread of a phytoplankton in the North Sea for a weak surface flow.

The large-*t* limit 0000 Fast reactions

Reactive fronts in the absence of a flow

Reaction-diffusion with Fisher-Kolmogorov nonlinearity

$$\partial_t heta(oldsymbol{x},t) = \kappa \Delta heta(oldsymbol{x},t) + rac{1}{ au} \, heta(1- heta), \quad heta(oldsymbol{x},0) = egin{cases} 1 & ext{if } x \geq 0 \ 0 & ext{if } x < 0. \end{cases}$$

The large-*t* limit 0000 Fast reactions

Reactive fronts in the absence of a flow

Reaction-diffusion with Fisher-Kolmogorov nonlinearity

$$\partial_t heta({m x},t) = \kappa \Delta heta({m x},t) + rac{1}{ au} \, heta(1- heta), \quad heta({m x},0) = egin{cases} 1 & ext{if } x \geq 0 \ 0 & ext{if } x < 0. \end{cases}$$

 $\theta(\mathbf{x}, t) = 0$ is an unstable solution (growth) $\theta(\mathbf{x}, t) = 1$ is a stable solution (saturation)

The large-*t* limit

Fast reactions

Reactive fronts in the absence of a flow

Reaction-diffusion with Fisher-Kolmogorov nonlinearity

$$\partial_t \theta(\mathbf{x},t) = \kappa \Delta \theta(\mathbf{x},t) + rac{1}{ au} \, heta(1- heta), \quad heta(\mathbf{x},0) = egin{cases} 1 & ext{if } x \geq 0 \ 0 & ext{if } x < 0. \end{cases}$$

 $\theta(\mathbf{x}, t) = 0$ is an unstable solution (growth) $\theta(\mathbf{x}, t) = 1$ is a stable solution (saturation)

At large times, a front is established:

$$\theta(x,t) \to \Theta(x-c_0t), \quad \text{when } t \gg 1.$$

The large-*t* limit 0000 Fast reactions

Reactive fronts in the absence of a flow

Reaction-diffusion with Fisher-Kolmogorov nonlinearity

$$\partial_t heta({m x},t) = \kappa \Delta heta({m x},t) + rac{1}{ au} \, heta(1- heta), \quad heta({m x},0) = egin{cases} 1 & ext{if } x \geq 0 \ 0 & ext{if } x < 0. \end{cases}$$

 $\theta(\mathbf{x}, t) = 0$ is an unstable solution (growth) $\theta(\mathbf{x}, t) = 1$ is a stable solution (saturation)

The large-*t* limit

Fast reactions

Reactive fronts in shear and cellular flows

Reaction-diffusion-advection with Fisher-Kolmogorov nonlinearity

$$\partial_t \theta(\mathbf{x}, t) + \mathbf{u}(\mathbf{x}) \cdot \nabla \theta(\mathbf{x}, t) = \mathrm{Pe}^{-1} \Delta \theta(\mathbf{x}, t) + \mathrm{Da} \, \theta(1 - \theta)$$

where

$$\mathrm{Pe} = V\ell/\kappa$$
 and $\mathrm{Da} = \ell/V\tau$

and $\boldsymbol{u} = (u(y), 0)$ or

$$\boldsymbol{u} = \nabla^{\perp}\psi$$
 with $\psi = -Uy - \sin(x)\sin(y)$

in a channel geometry (analysis for unbounded 2D domain is similar)

The large-*t* limit

Fast reactions

Conclusions

Reactive fronts in shear and cellular flows Reaction-diffusion-advection with Fisher-Kolmogorov nonlinearity

$$\partial_t \theta(\mathbf{x}, t) + \mathbf{u}(\mathbf{x}) \cdot \nabla \theta(\mathbf{x}, t) = \mathrm{Pe}^{-1} \Delta \theta(\mathbf{x}, t) + \mathrm{Da} \, \theta(1 - \theta)$$

The large-*t* limit

Fast reactions

Reactive fronts in shear and cellular flows At large times, a pulsating front is established:

 $\theta(x, y, t) \rightarrow \Theta(x - ct, x, y), \text{ when } t \gg 1.$

where Θ is 2π -periodic in the second variable. Berestycki & Hamel (2002)

The large-*t* limit

Fast reactions

Conclusions

Reactive fronts in shear and cellular flows

At large times, a pulsating front is established:

$$\theta(x,y,t) o \Theta(x-ct,x,y), \quad \text{when } t \gg 1.$$

where Θ is 2π -periodic in the second variable. Berestycki & Hamel (2002)

Examples obtained for varying Da, Pe = 250 and U = 0

The large-*t* limit

Fast reactions

Conclusions

Reactive fronts in shear and cellular flows

At large times, a pulsating front is established:

$$\theta(x, y, t) \rightarrow \Theta(x - ct, x, y), \quad \text{when } t \gg 1.$$

where Θ is 2π -periodic in the second variable. Berestycki & Hamel (2002)

The large-*t* limit 0000 Fast reactions

Conclusions

Reactive fronts in shear and cellular flows At large times, a pulsating front is established:

 $\theta(x, y, t) \rightarrow \Theta(x - ct, x, y), \quad \text{when } t \gg 1.$

where Θ is 2π -periodic in the second variable. Berestycki & Hamel (2002)

The large-*t* limit

Fast reactions

Conclusions

Reactive fronts in shear and cellular flows At large times, a pulsating front is established:

 $\theta(x, y, t) \rightarrow \Theta(x - ct, x, y), \quad \text{when } t \gg 1.$

where Θ is 2π -periodic in the second variable. Berestycki & Hamel (2002)

What is the front speed c as a function of ${\rm Pe}$ and ${\rm Da}$? (when ${\rm Pe}\gg 1$)

The large-t limit •000 Fast reactions

Conclusions

Multiscale methods

Focus on advection-diffusion only:

$$\partial_t \theta(\mathbf{x}, t) + \mathbf{u}(\mathbf{x}) \cdot \nabla \theta(\mathbf{x}, t) = \mathrm{Pe}^{-1} \Delta \theta(\mathbf{x}, t).$$

For $t \gg 1$, the bulk behaviour is diffusive:

$$\partial_t \theta(x,t) + U \partial_x \theta = \kappa_{\text{eff}} \partial_x^2 \theta(x,t),$$

where the effective diffusivity κ_{eff} depends on \boldsymbol{u} .

For sudden localised release, predicts Gaussian concentration: $\theta(x,t)\sim e^{-(x-Ut)^2/(4\kappa_{\rm eff}t)}.$

- Accurate for $|x Ut| = O(t^{1/2})$.
- Fails in the tails, $|x Ut| \gg O(t^{1/2})$.
- Can capture the tails |x Ut| = O(t) using large deviations:

$$\theta(x,t) \sim e^{-tg(x/t)}.$$

(see Haynes & Vanneste (2014i,ii))

The large-t limit •000 Fast reactions

Conclusions

Multiscale methods

Focus on advection-diffusion only:

$$\partial_t \theta(\mathbf{x}, t) + \mathbf{u}(\mathbf{x}) \cdot \nabla \theta(\mathbf{x}, t) = \mathrm{Pe}^{-1} \Delta \theta(\mathbf{x}, t).$$

For $t \gg 1$, the bulk behaviour is diffusive:

$$\partial_t \theta(x,t) + U \partial_x \theta = \kappa_{\text{eff}} \partial_x^2 \theta(x,t),$$

where the effective diffusivity κ_{eff} depends on \boldsymbol{u} .

For sudden localised release, predicts Gaussian concentration:

$$heta(x,t) \sim e^{-(x-Ut)^2/(4\kappa_{
m eff}t)}.$$

- Accurate for $|x Ut| = O(t^{1/2})$.
- Fails in the tails, $|x Ut| \gg O(t^{1/2})$.
- Can capture the tails |x Ut| = O(t) using large deviations:

$$\theta(x,t) \sim e^{-tg(x/t)}$$

(see Haynes & Vanneste (2014i,ii))

Fast reactions

The eigenvalue problem for the speed

Put back reactions: Linearising around the tip of the front, $\theta \approx 0$

$$\partial_t \theta(\mathbf{x},t) + \mathbf{u}(\mathbf{x}) \cdot \nabla \theta(\mathbf{x},t) = \mathrm{Pe}^{-1} \Delta \theta(\mathbf{x},t) + \mathrm{Da}\, \theta(1-\theta).$$

For $t \gg 1$ we employ the large-deviation form for the passive tracer:

$$egin{aligned} & heta(\mathbf{x},t) pprox e^{-t(g(c)-\mathrm{Da})}\phi(\mathbf{x},y) & ext{where } c = rac{x}{t} = \mathrm{O}(1) \ & = egin{cases} & \infty, & ext{for } c < g^{-1}(\mathrm{Da}) \ & 0, & ext{for } c > g^{-1}(\mathrm{Da}) \end{aligned} \end{aligned}$$

The front speed is given by $c = g^{-1}$ (Da).

(see Gärtner & Friedlin (1979))

Fast reactions

The eigenvalue problem for the speed

Put back reactions: Linearising around the tip of the front, $\theta \approx 0$

$$\partial_t \theta(\mathbf{x},t) + \mathbf{u}(\mathbf{x}) \cdot
abla \theta(\mathbf{x},t) = \mathrm{Pe}^{-1} \Delta \theta(\mathbf{x},t) + \mathrm{Da} \, \theta(\mathbf{x},t) + \mathrm{Da} \, \theta(\mathbf{x},t) + \mathrm{Da} \, \theta(\mathbf{x},t)$$

For $t \gg 1$ we employ the large-deviation form for the passive tracer:

$$egin{aligned} & heta(\mathbf{x},t) pprox e^{-t(g(c)-\mathrm{Da})}\phi(x,y) & ext{where } c = rac{x}{t} = \mathrm{O}(1) \ & = egin{cases} & \infty, & ext{for } c < g^{-1}(\mathrm{Da}) \ & 0, & ext{for } c > g^{-1}(\mathrm{Da}) \end{aligned} \end{aligned}$$

The front speed is given by $c = g^{-1}$ (Da).

(see Gärtner & Friedlin (1979))

Fast reactions

The eigenvalue problem for the speed

Put back reactions: Linearising around the tip of the front, $\theta \approx 0$

$$\partial_t \theta(\mathbf{x},t) + \mathbf{u}(\mathbf{x}) \cdot
abla \theta(\mathbf{x},t) = \mathrm{Pe}^{-1} \Delta \theta(\mathbf{x},t) + \mathrm{Da} \, \theta(\mathbf{x},t) + \mathrm{Da} \, \theta(\mathbf{x},t) + \mathrm{Da} \, \theta(\mathbf{x},t)$$

For $t \gg 1$ we employ the large-deviation form for the passive tracer:

$$egin{aligned} & heta(\mathbf{x},t) pprox e^{-t(g(c)-\mathrm{Da})}\phi(x,y) & ext{where } c = rac{x}{t} = \mathrm{O}(1) \ & = egin{cases} & \infty, & ext{for } c < g^{-1}(\mathrm{Da}) \ & 0, & ext{for } c > g^{-1}(\mathrm{Da}) \end{aligned} \end{aligned}$$

The front speed is given by $c = g^{-1}$ (Da).

(see Gärtner & Friedlin (1979))

The large-*t* limit 00●0

Fast reactions

The eigenvalue problem for the speed

We solve for g(c) via an eigenvalue equation

$$f(q)\phi = \mathrm{Pe}^{-1}\Delta\phi - (u_1, u_2)\cdot \nabla\phi - 2\mathrm{Pe}^{-1}q\partial_x\phi + (u_1q + \mathrm{Pe}^{-1}q^2)\phi,$$

where f is the Legendre transform of g

$$g(c) = \sup_{q>0} (qc - f(q)),$$

and $\phi(x, y)$ is 2π -periodic in x with $\partial_y \phi = 0$ at y = 0, 1.

For $\boldsymbol{u} = \boldsymbol{0}$, $f(q) = \mathrm{Pe}^{-1}q^2$ which recovers classic result

$$c_0 = 2\sqrt{\mathrm{Da/Pe}} = 2\sqrt{\kappa/\tau}.$$

The large-*t* limit

Fast reactions

The eigenvalue problem for the speed

We solve for g(c) via an eigenvalue equation

$$f(q)\phi = \mathrm{Pe}^{-1}\Delta\phi - (u_1, u_2) \cdot \nabla\phi - 2\mathrm{Pe}^{-1}q\partial_x\phi + (u_1q + \mathrm{Pe}^{-1}q^2)\phi,$$

where f is the Legendre transform of g

$$g(c) = \sup_{q>0} (qc - f(q)),$$

and $\phi(x, y)$ is 2π -periodic in x with $\partial_y \phi = 0$ at y = 0, 1.

For $\boldsymbol{u}=\boldsymbol{0}$, $f(q)=\mathrm{Pe}^{-1}q^2$ which recovers classic result

$$c_0 = 2\sqrt{\mathrm{Da/Pe}} = 2\sqrt{\kappa/ au}.$$

The large-*t* limit 000●

Fast reactions

Conclusions

Example: Pe = 250, U = 0

Near the origin, effective diffusivity approximation applies:

$$g(c) \approx rac{\sqrt{ ext{Pe}}}{4}c^2$$

Childress (1979), Shraiman (1987), Soward (1987)

Away from the origin, reduced models using matched asymptotics

Haynes & Vanneste (2014), Tzella & Vanneste (2015)

Near the origin, effective diffusivity approximation applies:

$$g(c) \approx rac{\sqrt{ ext{Pe}}}{4}c^2$$

Childress (1979), Shraiman (1987), Soward (1987)

Away from the origin, reduced models using matched asymptotics

Haynes & Vanneste (2014), Tzella & Vanneste (2015)

In the limit of small molecular diffusivity and fast reaction i.e., when

$$\label{eq:period} \mathrm{Pe},\,\mathrm{Da}\gg 1,\quad\mathrm{Da}/\mathrm{Pe}=c_0^2/4=\mathcal{O}(1),$$

the solution to

$$\partial_t \theta + \boldsymbol{u} \cdot \nabla \theta = \operatorname{Pe}^{-1} \Delta \theta + \operatorname{Da} \theta.$$

can be approximated using a WKB approximation:

$$egin{aligned} & heta(m{x},t)\sim\mathrm{e}^{-\mathrm{Pe}\,\mathscr{I}(m{x},t,c_0)} \ &\sim\mathrm{e}^{-\mathrm{Pe}\,t\,(\mathscr{G}(c)-c_0^2)/4} \quad ext{for }t\gg 1. \end{aligned}$$

The large-*t* limit

Fast reactions

Conclusions

$$Da = O(Pe), c = C(Da/Pe)$$

At leading order, we obtain

 $\partial_t \mathscr{I} + \mathscr{H}(\nabla \mathscr{I}, \mathbf{x}, c_0) = 0 \quad \text{with} \quad \mathscr{H}(\mathbf{p}, \mathbf{x}, c_0) = |\mathbf{p}|^2 + \mathbf{u}(\mathbf{x}) \cdot \mathbf{p} + c_0^2/4$

where $\mathscr{I}(x, y, 0) = 0$ for $x \leq 0$ and ∞ otherwise.

The front interface is given by

$$\mathscr{I}(\boldsymbol{x},t,c_0)=0.$$

The large-*t* limit

Fast reactions

Variational formulation for the speed

The solution to the Hamilton-Jacobi equation is given by

$$\begin{aligned} \mathscr{I}(\boldsymbol{x}, T, c_0) &= \frac{1}{4} \left(\inf_{\boldsymbol{X}(\cdot)} \int_0^T |\dot{\boldsymbol{X}}(t) - \boldsymbol{u}(\boldsymbol{X}(t))|^2 \, \mathrm{d}t - c_0^2 T \right), \\ \text{subject to } \boldsymbol{X}(0) &= (0, \cdot), \quad \boldsymbol{X}(T) = \boldsymbol{x}. \end{aligned}$$

For $T \gg 1$, the front propagates at the constant speed c obtained from

$$\mathscr{G}(c) = \lim_{T \to \infty} \frac{1}{T} \inf_{\mathbf{X}(\cdot)} \int_0^T |\dot{\mathbf{X}}(t) - \mathbf{u}(\mathbf{X}(t))|^2 dt$$

subject to $\mathbf{X}(0) = (0, \cdot), \quad \mathbf{X}(T) = (cT, y).$

where the dependence on the specific value of y is dropped.

The large-*t* limit

Fast reactions

Variational formulation for the speed

The solution to the Hamilton-Jacobi equation is given by

$$\begin{aligned} \mathscr{I}(\boldsymbol{x}, T, c_0) &= \frac{1}{4} \left(\inf_{\boldsymbol{X}(\cdot)} \int_0^T |\dot{\boldsymbol{X}}(t) - \boldsymbol{u}(\boldsymbol{X}(t))|^2 \, \mathrm{d}t - c_0^2 T \right), \\ \text{subject to } \boldsymbol{X}(0) &= (0, \cdot), \quad \boldsymbol{X}(T) = \boldsymbol{x}. \end{aligned}$$

For $T \gg 1$, the front propagates at the constant speed c obtained from

$$\mathscr{G}(c) = \lim_{T \to \infty} \frac{1}{T} \inf_{\boldsymbol{X}(\cdot)} \int_0^T |\dot{\boldsymbol{X}}(t) - \boldsymbol{u}(\boldsymbol{X}(t))|^2 dt$$

subject to $\boldsymbol{X}(0) = (0, \cdot), \quad \boldsymbol{X}(T) = (cT, y).$

where the dependence on the specific value of y is dropped.

The large-*t* limit 0000 Fast reactions

Conclusions

Variational formulation for the speed

Taking $T = n\tau$,

$$\mathscr{G}(\boldsymbol{c}) = \frac{1}{\tau} \inf_{\boldsymbol{X}(\cdot)} \int_0^{\tau} |\dot{\boldsymbol{X}}(t) - \boldsymbol{u}(\boldsymbol{X}(t))|^2 \, \mathrm{d}t,$$

subject to $\boldsymbol{X}(\tau) = \boldsymbol{X}(0) + (2\pi, 0)$

and use $\mathscr{G}(c) = c_0^2$.

Alternatively,

$$c = \frac{2\pi}{\tau}$$
, where $\tau = \inf_{\boldsymbol{X}(\cdot)} \tau$ with $\boldsymbol{X}(\tau) = \boldsymbol{X}(0) + (2\pi, 0)$
subject to $\frac{1}{\tau} \int_0^{\tau} |\dot{\boldsymbol{X}}(t) - \boldsymbol{u}(\boldsymbol{X}(t))|^2 dt = c_0^2$.

The large-*t* limit 0000 Fast reactions

Conclusions

Variational formulation for the speed

Taking $T = n\tau$,

$$\mathscr{G}(\boldsymbol{c}) = \frac{1}{\tau} \inf_{\boldsymbol{X}(\cdot)} \int_0^{\tau} |\dot{\boldsymbol{X}}(t) - \boldsymbol{u}(\boldsymbol{X}(t))|^2 \, \mathrm{d}t,$$

subject to $\boldsymbol{X}(\tau) = \boldsymbol{X}(0) + (2\pi, 0)$

and use $\mathscr{G}(c) = c_0^2$.

Alternatively,

$$egin{aligned} c &= rac{2\pi}{ au}, & ext{where} \ \ au &= \inf_{oldsymbol{X}(\cdot)} au & ext{ with } oldsymbol{X}(au) = oldsymbol{X}(0) + (2\pi, 0) \ & ext{ subject to } rac{1}{ au} \int_0^ au |\dot{oldsymbol{X}}(t) - oldsymbol{u}(oldsymbol{X}(t))|^2 \mathrm{d}t = c_0^2. \end{aligned}$$

The large-*t* limit 0000 Fast reactions

Cellular flow (U = 0): Trajectories

Figure: Minimising periodic trajectories calculated numerically for $c_0 = 0.1$, $c_0 = 1$ and $c_0 = 10$. They become closer to the straight line $y = \pi/2$ as c_0 increases.

The large-*t* limit

Fast reactions

Cellular flow (U = 0): Speed

Figure: Comparison between asymptotic and numerical results of the front speed *c* when Da = O(Pe) for various values of $Pe \gg 1$.

The large-*t* limit

Fast reactions

Cellular flow $(U \neq 0)$: Trajectories

(a)
$$A = 0.5$$
, $U = 0$

Figure: Effect of small-scale perturbations and a mean flow.

The large-*t* limit

Fast reactions

Conclusions

Conclusions

Large deviation theory is a neat way to obtain the front speed in periodic flows:

Letting $\theta \asymp \exp[-t(g(x/t) - Da)]$ gives:

 $c=g^{-1}(\mathrm{Da}),$

where the rate function g is calculated by solving an eigenvalue problem.

- When the reactions are (very) weak, effective diffusivity may be used to approximate the front speed.
- When the reactions are strong, the front speed may be expressed in terms of periodic trajectories that minimise the time of travel across a period of the flow.

The large-*t* limit

Fast reactions

Conclusions

Outlook

- Geophysical flows.
- Other plankton ecosystems.

Thank you for your attention!

Tzella & Vanneste (2014) Phys. Rev. E 90, 011001(R); Tzella & Vanneste (2015) SIAM J. Appl. Math, 75(4), 1789-1816; Tzella & Vanneste (2018) in prep.

The large-*t* limit

Fast reactions

Conclusions

Cellular flow ($U \neq 0$): Speed

Figure: The difference between c and U, as a function of the bare speed c_0 for (left) various values of A with U = 0 and (right) various values of U with A = 0.