INTRODUCTION	INTERNAL TIDES	Scattering	NUMERICAL RESULTS	CONCLUSION
00	0000	000000	00	00

Scattering of internal tides by geostrophic flows

Jacques Vanneste School of Mathematics and Maxwell Institute University of Edinburgh, UK www.maths.ed.ac.uk/~vanneste

with Miles Savva

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ ▲ □ ● ● ● ●

INTRODUCTION	INTERNAL TIDES	Scattering	NUMERICAL RESULTS	CONCLUSION
00	0000	000000	00	00

Outline

INTRODUCTION

INTERNAL TIDES

SCATTERING

NUMERICAL RESULTS

CONCLUSION

▲□▶▲圖▶▲≣▶▲≣▶ ≣ のQ@

Inertia-gravity waves

Ocean dynamics: a mixture of

- slow motion: nonlinear dynamics of the geostrophic mode,
- fast oscillations: IGWs, with frequencies

$$f \le |\omega| \le N \; ,$$

i.e., minutes
$$\lesssim T \lesssim$$
 hours,

Phillips & Rintoul 2000; Ferrari & Wunsch 2009

The time-scale separation is estimated by the Rossby number

$$\epsilon = \frac{U}{fL} \ll 1.$$

Inertia-gravity waves

- about 10% of ocean kinetic energy is in IGWs,
- forced by winds and tides, topography...
- broad range of spatial scales, overlapping with scales of the geostrophic flow.

INTRODUCTION 00	INTERNAL TIDES	Scattering 000000	NUMERICAL RESULTS	Conclusion 00

Internal tides

Ocean ITs:

- generated by barotropic tide over topography,
- dominated by semidiurnal M_2 frequency, $\omega = 2\pi/12.25 \,\mathrm{h}^{-1}$,
- dominated by low vertical modes,
- spatial scales ~ 100 km as follows from dispersion relation

$$\omega = \pm \sqrt{f^2 + gH_n|\boldsymbol{k}|^2} \; .$$

Zaron & Egbert 2014

Ray & Zaron 2016

INTRODUCTION	INTERNAL TIDES	Scattering	NUMERICAL RESULTS	CONCLUSION
00	0000	000000	00	00

Internal tides

ITs matter because they:

- transport energy away from generation sites,
- dissipate through instabilities, breaking,
- cause small-scale mixing with impact on stratification and large-scale circulation,
- exert dissipative and non-dissipative wave drag,
- have a footprint on the sea-surface height.

Sea-surface footprint:

- complicates the retrieval of balanced flow from satellite altimetry,
- motivates studies of impact of geostrophic flows on ITs,
 - numerical simulations,
 - wave-averaged model.

Ponte & Klein 2015, Dunphy et al 2017 Wagner et al 2017

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ ▲ □ ● ● ● ●

INTRODUCTION	INTERNAL TIDES	Scattering	NUMERICAL RESULTS	CONCLUSION
00	0000	000000	00	00

 $\xi(z=0)/f$ [1]

500 1000

250

200

100

 η_c [cm]

500 1000

0.4

0.3

-0.3 -0.4

-0.5

Internal tides

3D Boussinesq simulations

Ponte & Klein 2015

Wagner et al 2017 With $p = f\psi + Ae^{-i\omega t} + A^*e^{i\omega t}$

1

Stiff equation for the wave amplitude.

INTRODUCTION	INTERNAL TIDES	Scattering	NUMERICAL RESULTS	CONCLUSION
00	0000	000000	00	00

Internal tides

Wagner et al 2017

ヘロト 人間 ト 人目 ト

What is the generic effect of a turbulent flow on ITs? Model flow by a random field and predict wave statistics. Assume:

- no spatial scale separation: $kL_{\text{flow}} = O(1)$: scattering.
- random flow, with stationary and homogenous statistics,
- ▶ weak flow, *e* ≪ 1: IGW dispersion ≫ advection, refraction,
- IGWs modulated over scale $\ell \gg k^{-1} \sim L_{\text{flow}}$.

Apply theory of wave scattering in random media to obtain an equation governing the wavenumber-resolving energy density a(x, k, t). Rhyzhik, Keller & Papanicolaou 1996

INTRODUCTION	INTERNAL TIDES	SCATTERING	NUMERICAL RESULTS	CONCLUSION
00	0000	00000	00	00

Starting point: Boussinesq system linearised about a fixed barotropic QG flow: $\epsilon^{1/2} \nabla^{\perp} \psi$, $\epsilon \ll 1$.

Project onto baroclinic modes:

$$D_t \boldsymbol{u}_n + \epsilon^{1/2} \boldsymbol{u}_n \cdot \nabla \nabla^{\perp} \psi + f \hat{\boldsymbol{z}} \times \boldsymbol{u}_n = -g \nabla \eta_n,$$
$$D_t \eta_n + h_n \nabla \cdot \boldsymbol{u}_n = 0,$$

where $D_t := \partial_t + \epsilon^{1/2} \nabla^{\perp} \psi \cdot \nabla$.

Define Wigner matrix,

$$W(\boldsymbol{x},\boldsymbol{k},t) = \int e^{i\boldsymbol{k}\cdot\boldsymbol{y}} \begin{pmatrix} \boldsymbol{u}_n(\boldsymbol{x}+\epsilon\boldsymbol{y}/2,t) \\ \eta_n(\boldsymbol{x}+\epsilon\boldsymbol{y}/2,t) \end{pmatrix} \otimes \begin{pmatrix} \boldsymbol{u}_n(\boldsymbol{x}-\epsilon\boldsymbol{y}/2,t) \\ \eta_n(\boldsymbol{x}-\epsilon\boldsymbol{y}/2,t) \end{pmatrix} d\boldsymbol{y}.$$

It satisfies a linear equation that can be solved perturbatively:

$$W(\boldsymbol{x},\boldsymbol{k},t) = W_0(\boldsymbol{x},\boldsymbol{k},t) + \epsilon^{1/2} W_1(\boldsymbol{x},t,\boldsymbol{k},\boldsymbol{x}/\epsilon,t/\epsilon) + \cdots$$

< □ > < 同 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

INTRODUCTION	Internal tides	Scattering	NUMERICAL RESULTS	Conclusion
00	0000	000000		00

To leading order,

$$W_0(\boldsymbol{x}, \boldsymbol{k}, \epsilon t) = a(\boldsymbol{x}, \boldsymbol{k}, t) \, \boldsymbol{e}(\boldsymbol{k}) \otimes \boldsymbol{e}^*(\boldsymbol{k}),$$

defines the energy density a(x, k, t).

Next order: use ergodicity to obtain the kinetic equation

$$\frac{\partial a}{\partial t} + \nabla_{\mathbf{k}} \omega \cdot \nabla_{\mathbf{x}} a - \nabla_{\mathbf{x}} \omega \cdot \nabla_{\mathbf{k}} a = \int_{\mathbb{R}^2} \sigma(\mathbf{k}, \mathbf{k}') a(\mathbf{k}') d\mathbf{k}' - \Sigma(\mathbf{k}) a(\mathbf{k}) ,$$

ション 人口 マイビン イビン トロン

- $\sigma(\mathbf{k}, \mathbf{k}')$ is the differential scattering cross-section,
- $\Sigma(\mathbf{k}) = \int \sigma(\mathbf{k}, \mathbf{k}') d\mathbf{k}'$, total cross-section.

INTRODUCTION	INTERNAL TIDES	SCATTERING	NUMERICAL RESULTS	CONCLUSION
00	0000	000000	00	00

The scattering cross-section is given by

$$\sigma(\mathbf{k}, \mathbf{k}') = \frac{2\pi}{gh_n\omega^3 |\mathbf{k}|^3} \Big\{ |\mathbf{k}' \times \mathbf{k}|^2 \big[(\omega^2 + f^2)\mathbf{k} \cdot \mathbf{k}' - f^2 |\mathbf{k}|^2 \big]^2 + f^2 \omega^2 \big[|\mathbf{k}' \times \mathbf{k}|^2 + \mathbf{k} \cdot \mathbf{k}' (|\mathbf{k}|^2 - \mathbf{k} \cdot \mathbf{k}') \big]^2 \Big\} \delta(|\mathbf{k}| - |\mathbf{k}'|) \hat{E}(\mathbf{k}' - \mathbf{k}),$$

where $\omega = \sqrt{f^2 + gh_n |k|^2}$, and E(k) is the flow kinetic energy spectrum.

- ► transfers restricted to |k| = |k'|, ie ω(k) = ω(k'),
- no effect of the (slow) time dependence of flow,
- for isotropic flows, $\sigma = \sigma(|\mathbf{k}|, \theta')$,
- since |k| is fixed, scattering in angular coordinate only.

Cross section $\tilde{\sigma}(\theta) = \int \sigma(\mathbf{k}, \mathbf{k}') |\mathbf{k}'| \, d|\mathbf{k}'|$ for a realistic $E(|\mathbf{k}|)$:

- $E(|\mathbf{k}|) \sim |\mathbf{k}|^{-3.5}$ for $|\mathbf{k}| \gg 1$,
- peak wavenumber $|\mathbf{k}| = \kappa$.

What is the effect of

$$\int \tilde{\sigma}(\theta - \theta') a(\theta', t) \, \mathrm{d}\theta' \, ?$$

▲ロト ▲ □ ト ▲ □ ト ▲ □ ト ● ● の Q ()

Ignoring spatial dependence, with $a(\mathbf{k}, t) = \sum_{n} a_n(t) e^{in\theta}$, the kinetic equation reduces to

$$\partial_t a_n = (\lambda_n - \lambda_0) a_n \; ,$$

with $\lambda_n = \int_0^{\pi} \tilde{\sigma}(\theta) \cos(n\theta) d\theta$.

- describes relaxation of IGWs towards isotropy,
- cf diffusion, $(\lambda_n \lambda_0) \mapsto -\kappa n^2$,
- two time scales:
 - λ_0^{-1} , scattering time scale,
 - $\max_{n \neq 0} (\lambda_n \lambda_0)^{-1}$, isotropisation time scale,

ション 人口 マイビン イビン トロン

• spatial scales: multiply by $c_g = \partial_k \omega$.

INTRODUCTION	INTERNAL TIDES	Scattering	NUMERICAL RESULTS	CONCLUSION
00	0000	000000	•0	00

Numerical results

Shallow water

 $L_{\text{scatter}} \simeq 659 \, \text{km}$, $L_{\text{isotropic}} \simeq 4334 \, \text{km}$.

・ロト・日本・日本・日本・日本・日本

Numerical results

Kinetic equation

With
$$\partial_y = 0$$
 and $|\mathbf{k}| = \text{const}$, $a(\mathbf{x}, \mathbf{k}, t) = a(\mathbf{x}, \theta, t)$ solves

$$\partial_t a + |\mathbf{c}_{\mathsf{g}}| \cos \theta \partial_x a = \int_0^{2\pi} \sigma(\theta - \theta') a(\theta') \, \mathrm{d} \theta' - \Sigma a(\theta) \; .$$

Introduction	Internal tides	Scattering	NUMERICAL RESULTS	CONCLUSION
00	0000	000000		•0

Conclusion

Scattering by random flows

- a formalism to study the generic impact of flows on IGWs,
- ► statistical take on earlier work, Lelong & Riley 1991, Bartello 1995,

Ward & Dewar 2010, Wagner et al 2017

- ► captures transport in (*x*, *k*)-space and scattering,
- for barotropic flows,
 - no scale cascade, energy confined to |k| = const,
 - isotropisation with predictable time/spatial scale,
 - generation at ridges: interplay between transport and scattering
- ▶ limit $\omega \rightarrow f$ recover earlier NIW results. Danioux & V 2016

INTRODUCTION	INTERNAL TIDES	Scattering	NUMERICAL RESULTS	CONCLUSION
00	0000	000000		0

Future work

 statistics of wave phase, wave-flow correlation.

Baroclinic flows:

- Scale cascade redistributes energy on the cone hossein $|k_h|/m = \text{const},$
- Initial-value vs forced problems,
- maintenance of balance by radiation to ∞ in *k* space.

H Kafiabad