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1. Inviscous Euler-Boussinesq and primitive equations

Euler-Boussinesq equations

(1) ∂tu+ ∇uu+ Ω× u+ θez + ∇p = 0

(2) ∂tθ + ∇uθ = 0 ,

(3) ∇ · u = 0 ,

where 1
2
Ω(x) is the local angular velocity vector, in the strip R2 × [0, H] with

free-slip boundary conditions

(4) u3 = 0 for z = 0 and z = H

Primitive equations Replace momentum equation (1) by

∂tu+ ∇uu+ fu⊥ +∇p = 0

∂zp = −θ
where f(x) = Ω3 is Coriolis parameter.



2. Common approaches to Averaging

2.1. Reynolds averaging

Example: RANS equations Consider Navier-Stokes

∂tu+ ∇uu− ν∆u+ ∇p = F

divu = 0

Average at each spacial location

u(x, t) =︷ ︸︸ ︷
Eulerian velocity =

ū(x, t)︷ ︸︸ ︷
Time average +

+u′(x, t)︷ ︸︸ ︷
Fluctuations

Write equation for the average velocity

∂ūi
∂t

+ uk
∂ūi
∂xk
− ν∆ūi +

p̄

∂xi
= F̄i +

∂u′iu
′
j

∂xj

divu = 0

Turbulent closure u′iu
′
j = F(ū)



3. Lagrangian averaging

Why Lagrangian averaging? Reynolds averaging:
• does not reproduce mean particle motion (Stokes drift)
• does not preserve geometric structure and associated PV conservation laws

Generalized Lagrangian mean Andrews & McIntyre (1978). Average following fluid
particles. Consider ensemble of flows ηβ . For Lagrangian label a,

ηβ(a, t) = X + ξβ(X, t) with 〈ξβ〉 = 0

Lagrangian mean flow and velocity

η(a, t) = X

ūL(X, t) = 〈uβ(X + ξβ(X, t), t)〉

Benefit Material derivative commutes with averaging:
DLq̄L

Dt
= Dq

Dt

L
, hence nice PV equations and conservation

laws.
Disadvantages of GLM
• Basic definitions make sense only in Rn

• Does not preserve incompressibility



3.1. Geometric GLM (Gilbert & Vanneste, 2017)

Idea: average flow maps. An incompressible flow η(x, t) of a divergence free v.f. u
satisfying free-slip BC is a curve in the diffeomorphism group

Diffs
vol(M) = {η ∈ Hs(M,M) |η(∂M) = M ,η(·, t) is 1-1, J(η) = 1}

Diffs
vol(M) is a smooth Riemannian manifold (Palais, Omori, Ebin, . . . ).

Use the notion of geodesic distance intrinsic to Diffs
vol to define average of flows

Geodesic distance on a Riemannian manifold N .

Dist(φ,ψ) = inf
γs:[0,1]→N
γ0=φ ,γ1=ψ

,γ is geodesic

∫ 1

0

g(γ̇s, γ̇s)dt ,

Geometric center of mass η of an ensemble ηβ then is defined by

η = arg min
φ∈N

〈Dist(φ,ηβ)〉

Main idea: take the mean flow to be the geometric center of mass of realizations on
Diffs

vol.



Geodesic distance on Diffs
vol is given by integral of geodesic kinetic energy. For

φ,ψ ∈ Diffs
vol(M),

Dist(φ,ψ) = inf
γs:[0,1]→Diffs

vol
γ0=φ ,γ1=ψ

∫ 1

0

∫
M

g(γ̇s, γ̇s) dx dt ,

Geometric GLM equations on Diffs
vol define the mean flow Suppose

ηβ = ξβ ◦ η

and ξβ,s is a geodesic connecting ξβ and identity (i.e. ξβ,0 = id and ξβ,1 = ξβ). Let
∂sξβ,s = wβ,s ◦ ξβ,s. Then wβ,s satisfy Euler equation (Gilber and Vanneste, 2017):

w′
β,s + ∇wβ,swβ,s = −∇ϕβ,s , 〈wβ〉 = 0.

These equations need to be complemented by a model for the dynamics of
fluctuations.



4. Variational formulation of PE

Let η denote the flow of a time-dependent Eulerian velocity field u, i.e.

η̇ ≡ ∂tη(a, t) = u ◦ η(a, t) , η(·, 0) = id

θ0 be the initial potential temperature distribution andR = (R(x), 0)T be a vector
potential for the Coriolis parameter f .
Then u, θ satisfy EP iff η satisfies the variational principle

L(η, η̇) =

∫
M

1
2
|η̇|2 +R ◦ η · η̇ − θ0η3 da δ

∫ t

0

L(η, η̇)dt , η ∈ Diffs
vol ,

wrt variations of the flow map δη = v ◦ η vanishing at the temporal end points.

Equivalent VP In Eulerian quantities

L(η, η̇) = `(u, θ) ≡
∫
M

1
2
|u|2 +R · u− θz dx , δ

∫ t

0

`(u, θ) dt = 0,

subject to variations in u and θ obeying Lin constraints

δu = v̇ + Luv ,
δθ + ∇vθ = 0 .



5. Model derivation

GLM Consider ε as a small amplitude parameter, η is the geodesic mean of ηε,β .

η̇β,ε = uβ,ε ◦ ηβ,ε η̇ = u ◦ η .

Make closure such that

〈L(ηβ,ε, η̇β,ε)〉 = L̄(η, η̇) + O(ε3).

Define averaged equations as Euler-Lagrange equations for L̄.

Taylor expand in ε near ε = 0:

uβ,ε = u+ εu′
β + 1

2
ε2 u′′

β +O(ε3) ,

θβ,ε = θ + ε θ′β + 1
2
ε2 θ′′β +O(ε3) ,

From cross-differentiation: Lin constraints

u′
β = ẇβ + Luwβ θ′β = −∇wβθ

From GLM theory w′
β + ∇wβwβ = −∇ϕβ , 〈wβ〉 = 0.



Closure Assumptions:

1. Generalized Taylor Hypothesis: first order fluctuations are Lie transported by the
mean flow as a vector field.

ẇ + Luw = 0

2. Horizontal Isotropy of fluctuations: first order fluctuations are horizontally
statistically isotropic, i.e.

〈wβ ⊗wβ〉 =

1 0 0
0 1 0
0 0 0





6. Horizontaly Isotropic Lagrangian averaged PE

Averaged Lagrangian

¯̀(u, θ) =

∫
M

1

2
|u|2 + R̃ · u− zθ dx+ ε2

2

∫
M

|∇uh|2 dx , with R̃ = R− ε2

2
∆R

Euler-Poincare equations

∂tvh + ∇uvh + (∇uh)Tvh + f̃u⊥ + θez + ∇p = 0 ,

∂tu+ ∇uu+ fu⊥ +∇p = 0

∂tθ + ∇uθ = 0 ,

∇ · u = 0 ,

where v = u− ε2∆u and f̃ = f − 1
2
∆f are the circulation velocity and effective

Coriolis parameter, respectively.

Boundary conditions u3 = 0 , ∂zu = 0 on z = 0, H .

Note : The HILAPE without red terms were derived in Holm, Marsden & Ratiu, 1998
by postulating Lagrangian ¯̀and numerically studied by Hecht, Holm, Petersen &
Wingate, 2007.



6.1. Averaged conservation Laws

Energy conservation

E(u, θ) =

∫
M

1
2

(
|u|2 + ε2|∇u|2

)
+ θ z dx

potential vorticity q is conserved on fluid particles,

q = (f̃ + ∇× vh) ·∇θ ,

with corresponding Kelvin’s circulation theorem

d

dt

∮
γ(t)

(vh + R̃) · dx = −
∮
γ(t)

θ dx



7. Beyond PE

The method is very robust, using it we derived a number of averaged fluid models
provided the underlying system arises from variational principle. It also works on
manifolds. The challenge is to adapt this averaging technique to dissipative systems,
such as NS.

Underlying system Averaged model
Euler-Boussinesq EB-α

Incompressible Euler Euler-α
Burgers 1D Camassa-Holm

Burgers 2D &3D EPDiff



Discussion

• We derive the inviscid PE-α equations as a turbulence model based on 3
assumptions: geodesic GLM, Taylor hypothesis and isotropy of fluctuations.
• In general, for rotating fluids the described approach produces α-models with

correction terms, which are not very significant since they vanishes on f - and
β-planes.
• On the other hand, in cases where alternative derivation of α-model as a mean

flow model is available, it requires additionally second order Taylor hypothesis:

〈ẇ′′ +∇uw′′〉 ⊥ u

Geodesic GLM approach does not require this since Generalized Taylor
hypothesis + GLM equations determine fluctuations vector field to all orders.
• The derivation does not address the question whether PE-α is a good turbulence

model, however it exposes the set of underlying assumptions.


	Inviscous Euler-Boussinesq and primitive equations
	Common approaches to Averaging
	Reynolds averaging

	Lagrangian averaging
	Geometric GLM (Gilbert & Vanneste, 2017)

	Variational formulation of PE
	Model derivation
	Horizontaly Isotropic Lagrangian averaged PE 
	Averaged conservation Laws

	Beyond PE

