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BACKGROUND & MOTIVATION

Ways to know & understand eddy feedbacks

* “eddies” play critical roles in the zonally-
averaged energy and momentum budgets of
the atmospheric general circulation

- north-south heat transport
- north-south momentum transport

LAHTUDE (¢) ——s

* “eddies” also play critical roles in the
oceanic circulation LONGITUGE. (3 ——

- limiting the further acceleration of upper [ECMWF Meteorological Training Course Lecture Series, 2002]
ocean circulation

- transferring energy and momentum from the
upper to the deep ocean

- establishing mean deep motions

e common to pose the eddy-mean flow
interaction problem in a zonal-mean
framework but this is not universally relevant
nor best for the task of parameterization

* a generalized understanding of role of
transient “eddies” in the slowly-evolving
large-scale circulation is less well-
understood

[NASA]



BACKGROUND & MOTIVATION

Modern Relevance
= representing eddy effects in coarse resolution models

e resolving mesoscale (O(10 km)) eddy
variability in the ocean component
model matters for the simulation of
large-scale climate

* we need to parameterize both individual
processes and eddy interactions &
feedbacks

* pressing need for parameterizations that

scale with resolution and are
appropriate for partially resolved eddy
fields

e the task of parameterization requires
identification of the larger-scale
(resolved) eddy characteristics that give
indication of eddy feedbacks

20 cms-! contour for
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20 cms-1 contour for model

LOW resolution

model
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Annual mean surface current speeds (cms')

[Kirtman et al., in prep]



WAYS TO KNOW & UNDERSTAND EDDY-MEAN FLOW INTERACTIONS

1. The Reynolds Decomposition

substitution U = U + U’

into the ) -

governing ‘mean’ ‘eddy’
equations

\ mean field
> equations

divergence
forcing’
® understanding _  understanding mean eddy
eddy-mean flow flux divergences & their

® O feedbacks impact on the mean flow



WAYS TO KNOW & UNDERSTAND EDDY-MEAN FLOW INTERACTIONS

2. The Variance Ellipse

* encode info about eddy
Kinetic energy and the
anisotropy & orientation of
eddy fluxes

e describe properties of the
time-mean eddy motion &
eddy forcing of the mean flow

a® = u'u cos?0 + u'v sin(20) + vV'sin”0

b> = ' cos’d + u'v' sin(20) + v'v' sin*¢

0 = jtan™" ((u/f,/u_/vvlzv/)) , 0=0+7




TODAY'’S TALK: BIG PICTURE

The Geometric Decomposition of Eddy Feedbacks
= eddy forcing as the sum of patterns in various aspects of variance

ellipse geometry

U + U’
. B
‘mean’ ‘edd ’

= time-mes¢
eddy flu
divergence

‘eddy

time-mean

> field

equations

—p

The
geometric
decomposmo ’

L

forcing’




TODAY'’S TALK: BIG PICTURE

Talk Overview

1. derivation of the geometric
decomposition framework

2. application to an idealized WBC jet

3. new insights into the loss of eddy
effects with coarsening model
resolution

4. application to global observations
and model output (work Iin
progress)

5. extension to 3D dynamics (work in
progress)

5 [u/u/ ' ]

u/vl v/v/

>F = FQ—I—FL:V'fQ—I—V'fL

P -
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The Geometric Decomposition: Derivation

/ /
time-mean
eddy
covariance

matrix time-mean
eddy fluxes of

eddy stress matrix horizontal

momentum

eddy flux tensor

Eliassen-Palm
flux tensor



THE GEOMETRIC DECOMPOSITION: DERIVATION

Geometric Interpretation of 2

Z I/l/ l/t/ l/l,V,
o i/
u'v. vy
In terms of its eigenvectors and eigenvalues:
) -
HOIRENRPAC
=J(6)| 2 [0
here:
WheTe 1 () = cos® —sinO
| sin® cosH
and a* = Wil cos*0 +u'v'sin(20) +vvsin?9 = ellipse major axis?

b2 = ' cos20+ 'V sin(20) +vV'sin’¢p = ellipse minor axis?

0 = ltan~! <( ,ZW ) , 0=0+7 = ellipse orientation

u’—v’v’)



THE GEOMETRIC DECOMPOSITION: DERIVATION

Geometric Interpretation of 2

uu uv
2= I\, I\,
uy vy

In terms ellipse size, shape and orientation:

10 1 0
=K LJ(26
01 (26) 0 -1
where:
cos® —sin0
J(8) = [sin@ cos© ]
and g =1(u2+v2) =1(a>++") = ellipse ‘size’ (EKE)
L=73 (u'2 v'2) = (a*—b*) = ellipse ‘shape’ (energy in
_ anisotropic motions)
6 = jtan™! <(u,i,” ‘;,v,)> = ellipse orientation



THE GEOMETRIC DECOMPOSITION: DERIVATION

Geometric Interpretation of 2

uu uv
2= I\, I\,
uy vy

In terms ellipse size, shape and orientation:

10 1 O
- K L1(260)
01 0 -1
isotropic anisotropic
where: cos® —sin6
J(8) = [ sin® cosO ]
and k=1 (7+2) =} (@+5) = ellipse ‘size’ (EKE)
L=1 (zﬂ —v'2) — (2 —1?) =ellipse ‘shape’ (energy in
__ anisotropic motions)
0 = jtan”! <(u5”‘;v)> = ellipse orientation



THE GEOMETRIC DECOMPOSITION: DERIVATION

Dynamical Interpretation of

u/u/ I/l/V/
Z — [~/ [,/
uy V'V
eddy
momentum flux Z
eddy V
momentum flux .
divergence Z
eddy —

vorticity flux k ) V X [V . Z]

divergence



THE GEOMETRIC DECOMPOSITION: DERIVATION

The Geometric Decomposition

(10 1 0
Z_K_O 1_+LJ(2@)_O




THE GEOMETRIC DECOMPOSITION: DERIVATION

The Geometric Decomposition

1 0] ' cos(20) —sin(20)
momentum fluxes i 0 1 | - S1N (2 9) cos (2 9) |
l ' ) ' |
ellipse size / eddy energy ellipse shape and
orientation

¢ eddy momentum R - 1 0 ~ 01
flux divergences V-2=VK+ |VL 0 —1 + 2LVO 1 0
\ J \ J \ J
| |
spatial gradients spatial gradients spatial gradients
of ellipse size of ellipse shape of ellipse orientation

e eddy vorticity ]_C)VX[VZ]:A—FB—FC—FD

flux divergence where

(‘The eddy ForCing') 92 920 920 90 90 3L
_ _ 9% 0  dLJb
A=-2%5L B=2L |39 - 28| C=8LRR D4 [L2 _ox]
\ ' J \ ' ) \ ' ] | ' J
NOTE: ~ = in the frame of curvature curvature squared gradients cross-term of gradients of

in ellipse in ellipse ellipse shape

the local eddy orientation! o . |
orientation orientation & ellipse orientation

in ellipse shape




THE GEOMETRIC DECOMPOSITION: DERIVATION

Algebraic Simplifications

[algebra...]
\ J \ J \ )
| | |
eddy vorticity flux spatial patterns of spatial patterns of
divergence ellipse orientation  ellipse shape
(‘The eddy forcing’) (+ cross-term) (+ cross-term)
where
F, —027] |2%8 _ 0% 18,9090 | o |0L2® _ IL06
0 — ST ZY Jf 9y | 050y 0y OF
\ l \ } l l
Y Y I
curvature squared gradients  cross-term of gradients of
in ellipse in ellipse ellipse shape
orientation orientation & ellipse orientation
_ 9° 0LJ® _ JL 99
Fp = zax"ay‘L +2 [856 dy 9y 8)2}
| \ J
\ Y Y
curvature cross-term of gradients of
in ellipse ellipse shape

shape & ellipse orientation



THE GEOMETRIC DECOMPOSITION: DERIVATION
Algebraic Simplifications
[algebra...]

F = F9—|—FL:V°f9—|—V°fL

divergence
theorem

%

FdA:ijg-ﬁds+7§fL-ﬁds
C C

A
net eddy forcing in linear variations in linear variations in
the area A ellipse orientation ellipse shape

(‘The eddy forcing’) around the area boundary around the area boundary

where

fg =

cos260 sin20 sin20 —cos26

sin20 —cos20

2LVO L=

—Cc0s20 —sin26

VL



THE GEOMETRIC DECOMPOSITION

Advantages

* identifies important elements - — \ ; \ ;
ST | |
of the eddy Va”a_b'“ty that have eddy vorticity flux spatial patterns of ~ spatial patterns of
a mean flow forcing effect divergence ellipse orientation  ellipse shape
( ‘the eddy forcing’ ) (% cross-term) (+ cross-term)
* links physical mechanisms
underpinning eddy feedbacks
to physical mechanisms A _ A O
Phy . f-fids=1g-fids+1;-fids
setting the spatial patterns of
eddy geometry eddy flux linear variationsin linear variationsin
across the ellipse orientation ellipse shape
boundary along the along the

* describes eddy feedbacks in
terms of a lower order
description of the eddy motion

e suggests ingredients of a /AFdA — 7€f9 -Nds+ %CfL -Nds

parameterization based on o
net eddy forcing in linear variations in linear variations in

resolved eddy geometry the area A ellipse orientation ellipse shape
) around the area boundary around the area boundary

boundary boundary

( ‘the eddy forcing’



The Geometric Decomposition: Application

Eddy-mean flow feedbacks in a toy model Western
Boundary Current Jet

f wg:ﬁ’ 050523

0 20 40 60 80 100

B | B
0 0.5 1

speed (m/s)


http://www.deos.tudelft.nl/altim/gulfstream/

THE GEOMETRIC DECOMPOSITION: APPLICATION

Model set-up

t=1

80 100 -5

|
0 0.5

speed (m/s)

e quasi-geostrophic
 mid-latitude 3 plane
e barotropic

e forced by an unstable jet inflow at x=0 scaled to look like the
Gulf Stream or Kuroshio at the coast at the point of separation

* insensitive to the the outflow condition
e sponge layers on all lateral boundaries model “open ocean”
* negligible dissipation in the interior

I8 1
BO 0 6! 60 fal 0 4! 40

0.2 0.4 = 0.6 0.8 S p e ed ( m/S )

Snapshot of Gulf Stream speed 10 Apr 2013 derived from
near-real-time radar altimeter data of the European
Environmental Satellite Envisat. Source: DEOS

See Waterman and Jayne 2011


http://www.deos.tudelft.nl/altim/gulfstream/

THE GEOMETRIC DECOMPOSITION: APPLICATION

Eddy feedbacks a priori understanding

— time-mean streamfunction
—>» divergent eddy vorticity flux
time-mean EKE

e eddies play 2 important roles: unstable jet transition I¥lvaal‘(,eer I5
- stabilizing the jet to its large- _ 5
sga!eshear 10l -sseseeeemz. Ui I D e e e g
- driving mean flows ....@.....\c:. Sy PR .%_3)
* each effect is localized to a A\ R Y P2 3)) BN Ve 1 é
distinct along-stream region 3 S
defined by the stability >~ 0 = i S
properties of the time-mean (A «
jet: TN AN ‘1 ey Lo 3
- upstream eddies act to R RS RS> d 2
stabilize the jet via a AR SRR Y. AN I c
down-gradient vorticity ok - S——<—=47 ., . Cana e e o
flux ' _1 q%
- downstream eddies 0 20 40 60 E
strengthen the jet & drive X
recirculations via an up- time-mean jet UNSTABLE time-mean jet STABLE
gradient vorticity flux eddy energy is GROWING  eddy energy is DECAYING

gﬁ;r;g’;ehd loC%ﬁCeerggxce eddy enstrophy is DIVERGENT  eddy enstrophy is CONVERGENT
4 eddies act to STABILIZE the jet  eddies act to STRENGTHEN the jet

via a DOWN-GRADIENT eddy vorticity flux ~ via a UP-GRADIENT eddy vorticity flux
See Waterman and Jayne 2011



THE GEOMETRIC DECOMPOSITION: APPLICATION

Ellipse Geometry

highly ANISOTROPIC

eddies elongated ALONG the jet
eddies titted INTO THE SHEAR
eddies energy GROWING

eddies are
ISOTROPIC
eddies energy
MAXIMIZED

D";l’

- -
'

@&:M
M

e
L\

e Q|

increasingly ANISOTROPIC
eddies elongated ACROSS the jet
eddies titted WITH THE SHEAR
eddies energy DECAYING



THE GEOMETRIC DECOMPOSITION: APPLICATION

1. via 2nd order spatial pattgrns

F = Fg+F FE"

eddy vorticity flux spatial patterns of spatial patterns of
divergence ellipse orientation ellipse shape
( ‘the eddy forcing’ ) (+ cross-term) (+ cross-term)

-0.015 -0.01 -0.005 0 0.005 0.01 0.015



THE GEOMETRIC DECOMPOSITION: APPLICATION

2. via linear variations along a boundary

A A A -3
f-fids=1g-0ids+1;-fids 15X 10
eddy flux linear variationsin linear variationsin
across the ellipse orientation ellipse shape
boundary along the along the
boundary boundary

0 0 40 60 80

0 20 40 60 80
distance along contour

0 20 40 60 s0 25



THE GEOMETRIC DECOMPOSITION: APPLICATION

3. via the integral form

/FdA:jq{f@-ﬁdH]ffL-ﬁds
A C C

net eddy forcing in linear variations in linear variations in x*
the area A ellipse orientation ellipse shape ‘
( ‘the eddy forcing’ ) around the area boundary around the area boundary

net vorticity
X OUT divergence

net vorticity
o EKE max XIN convergence

. net flux arisin
fg: X from O varlat%ns

B —

[0.02 OU
L 0.02 IN

m f.:0.01

fioX  het flux arising

. from L variations
fo: 0.04
fl:-0.01
fo:0.01

fe:0.03,| 0.0l IN fg:0.03
f:0.017°0.01 OUT f:0.01

0.08 OUT

f:0.02 n '
- B f:001
£.:0.01
x

fe: 0.04
f:-0.01

< unstable jet — <— transition — < wave-maker ——>



THE GEOMETRIC DECOMPOSITION: APPLICATION

3. via the integral form

* EKE max

in the upstream unstable jet:

- eddies stabilize jet via a down-gradient vorticity flux across jet
axis & jet flanks

- accomplished by variations in ellipse orientation consistent w/
growing barotropic instability with along-stream distance

fe:0.04
f.:-0.01

fo: 0.01
fL:0.01

|, 0.01 IN fa:0.03
f:0.017°0.01 OUT f.:0.01

fL:0.01
fo: 0.04
fLZ -0.01

0.08 OUT

< unstable jet — <— transition — < wave-maker —>



THE GEOMETRIC DECOMPOSITION: APPLICATION
3. via the integral form

- eddies drive

by

fe:0.03 ), 0.01 IN moving vorticity
f:0.01[°0.01 OUT <> Jet&gyre

- 75% derived from

e fe:0.01 variations of ellipse
f.:0.01 shape along the
> recirculation edge

0.08 OUT

< unstable jet > «<— transition — < wave-maker —>



THE GEOMETRIC DECOMPOSITION: APPLICATION

3. via the integral form

in the downstream wave maker:

- eddies strengthen jet via modest up-gradient fluxes
across jet axis & jet flanks

0.0l OUT

- majority can be derived from variations in ellipse
orientation along the jet axis and jet edges

f:0.01
0.08 OUT

< unstable jet > «<— transition — < wave-maker —>



THE GEOMETRIC DECOMPOSITION: APPLICATION

Summary

3 dominant eddy effects well
approximated by large-scale
linear variations of a single
geometric property along well-
defined mean flow boundaries

e these variations often consistent )
with expectations from stability 0.24 OU — 003, 0.01 IN ﬂfa:0.0S.
theory & models of wave —— T oot
radiation

 demonstrates promise of
framework to:

1. infer eddy forcing from relatively
coarsely-resolved fields

2. link eddy forcing to physical
processes

3. suggest ingredients of an eddy
parameterization

«<— unstable jet — <«— transition — <—— wave-maker ——



New Insights
Eddy effects as a function of model resolution

dx =4 km dx =8 km dx =12 km

0

40 -

\@

0 500 1000 1500 2000 2400 0 500 1000 1500 2000 2400 0 500 1000 1500 2000 2400

y (km)

|

-40 -

We see a rapid break-
_ dx =16 km dx =20 km dx =24 km
down in the eddy ey | U - ‘

. 40 - , 40 - I I 40,‘ \\/"\\) |
f & eddy effect
t(r:gnsnpgatiale resyoleutiesn iasS = @3 @D @
degraded @E @)

&%

=/

e significant degradation in s 0. 0. ,
: SN
magthde & eXtent Of the O 560 1000 1560 20‘00 2400 O 560 10‘00 1560 20‘00 2400 0 560 1000 15‘00 2060 2400
eddy forcing along the jet dx = 32 km dx = 40 km dx = 48 km
axis & in the wave maker o —i~ | | . ‘ w TN w0
region o () @)
N3
e eddy enhancement to jet E - oég —— —
strength is weakened > e\ e— w
©) © «©
* eddy-driven recirculations " . M o«
become weaker 0 500 1000 1500 2000 2400 0 500 1000 1500 2000 2400 0 S0 1000 1500 2000 2400
x (km) x (km) x (km)
* eddy-driven recirculations _
have reduced zonal extent ] x B — time-mean
-5 0 . 5 stream
eddy forcing 108 function

(eddy PV flux divergence)



THE GEOMETRIC DECOMPOSITION: NEW INSIGHTS

Eddy effects as a function of model resolution

dx =4 km dx = 8 km dx =12 km

40 -

y (km)

L -40 -

0 500 1000 1500 2000 2400 0 500 1000 1500 2000 2400 0 500 1000 1500 2000 2400

dx =16 km

y (km)

-40 -

T T T ! T T
0 500 1000 1500 2000 2400

dx =48 km

T T T : T r
500 1000 1500 2000 2400 0

dx =32 km

0

40 - : \\ 40—‘ 40—‘ ’ \\\\/\/\\
i S \ N
DESPITE the fact that | :
» V%
EKE remains well- s o o , |
resolved. . 3
-40 - : -40 40 - //\/
6 560 1 OO(I) 1 5‘00 20‘00 2400 0 560 1 OI‘OO 1 5‘00 20‘00 2400 0 560 1 ObO 1 5‘00 20‘00 2400
X (km) x (km) x (km)
| | ] . 1IN
0 0.02 0.04 0.06 0.08

eddy kinetic energy (EKE) (m?s)



THE GEOMETRIC DECOMPOSITION: NEW INSIGHTS

Eddy effects as a function of model resolution

 we find average eddy size _
(proportional to EKE) is well ® e zonal
resolved but the average eddy — 9~ mendiona - O
shape is not s —_—)

coarsening resolution

O
(o))

(o)}
o

e asdx T, zonal eddy scale ¥,

(o))
o

meridional eddy scale ¢

N
o

* average eddy anisotropy declines
as characteristic eddy shape
becomes increasingly circular

mean upstream eddy scale (km)
O
@
O
O
©
mean upstream eddy anisotropy
o
(62}

. . | | 0.4 ' '
e appreciation of the importance of 0.0 0.5 1.0 0.0 0.5 1.0

eddy anisotropy to eddy dx dx
feedbacks suggests failure to

resolve small scales of highly

anisotropic eddies underpins the

quick loss of eddy forcing




THE GEOMETRIC DECOMPOSITION: NEW INSIGHTS

Eddy effects as a function of model resolution

—&— linear friction; scaled inflow
—®— linear friction; unaltered inflow
—®— biharmonic (fixed for L =8 km); scaled inflow
—®— biharmonic (fixed for L = dx); scaled inflow
—®— biharmonic (fixed for L = 8 km); unaltered inflow
—®— biharmonic (fixed for L = dx); unaltered inflow
103 _ 06 B
3 11| ®
. 10 ' | ®
// “(D AN 5 0.5
3 2
I // > -
2 A ° C.0.45
-é ‘ E %
' ‘ 0 o o O o o
L | [e) o)
—  Leo8eee o 8 ° = £0.35
- > o %)
I o 9 O @ o
_ O O -]
® L o c 0.3f
o - 5
o £ 0.25 °
10° ' ' ®
10’ ' ' 0.2 ' '
0.0 0.5 1.0 0.0 0.5 1.0 0.0 0.5 1.0
dx dx dx

* we find these trends are ~ consistent across multiple simulation series suggesting the
association of a decline in eddy forcing with coarsening resolution with a decline in resolved
eddy anisotropy is robust



Application to global fields

Anisotropic EKE, Surface, ORCA12

e NEMO Ocean Model at 1/4° and
1/12° resolution (“ORCA025” and
“ORCA12")

- horizontal velocities form global
ocean-ice model hindcasts
2003-2012

- 5 day means to compute u’and v

Latitude

L

90E " 180E 90W OE

* AVISO satellite altimetry data at
1/4° nominal resolution

- compute geostrophic velocities
from ASSH for same period
(2003-2012)

- “daily” fields to compute u” and v’

60N

Latitude

| v Ny

0S == = D
ST

30SF

60S|

Longitude

Work led by Kial Stewart, ANU

le-1

qle-2

11e-3

le-1

11e-3




THE GEOMETRIC DECOMPOSITION: APPLICATION TO GLOBAL FIELDS

Ratio of Anisotropic EKE to Total EKE, Surface, ORCA12

L/K at

the surface

- large in and surrounding
regions of large flow
speeds, at the equator, &
along coastlines & shelf
breaks

- small inside basin gyres

- many characteristics
familiar to the distribution
of EKE but more
localized to large flow
speed regions and richer
in small-scale structure

Latitude

Latitude

60N

30N

osk

30S

60N

30NF

o
wn

Ay

EKE to Total EKE, Surface, AVISO

A

Ratio of Anisotropic

Longitude



THE GEOMETRIC DECOMPOSITION: APPLICATION TO GLOBAL FIELDS

Ratio of Anisotropic EKE to Total EKE, Surface, ORCA12

L/K at the

bottom

30N

- near-bottom eddy field is 3
highly anisotropic almost 57
everywhere: average L/
K=0.65
" mFE{atio of Anisotropic E?(E to Total EKE, Bottornri, ORCA12
% 10.6

Longitude



THE GEOMETRIC DECOMPOSITION: APPLICATION TO GLOBAL FIELDS

L/K at the

bottom

- near-bottom eddy field is
highly anisotropic almost
everywhere: average L/
K=0.65

- near-bottom anisotropy
intensifies above sloping
bathymetry and reduces
for regions of locally flat
bathymetry; shows a
strong vertical coherence

]
I
Il Il‘\
! Ll 1 'M
] LT | m.m' [ Mo ML

Ratio of Anisotropic EKE to Total EKE, zonal average, ORCA12

GLOBAL AVERAGE

Ratio of Anisotropic EKE to Total EKE, zonal average above steep bathy., ORCA12

>
3
o‘,%/\_ by JN
t‘\\ v
XNTs

ABOMJE SLOPH NG BATHYMETRY
1 HI Mk b | e umlm..mlmhx*mmh“'IhﬁJ humMLmJMLA..mAmuummﬂ‘“ﬁm“‘ndl‘n.h.m...J.’.“mlnm..m..u- A.ullmm..‘mﬂulm..
Ratio of Anisotropic EKE to Total EKE, zonal average above flats, ORCA12
T B \,:/o\‘*gﬁ/l— —‘—> a7

%OVE FLAT BATHYM ETRY

665 OS 25N
Latltude

Il.O

10.8
10.6
10.4

40.2

Inn
Il.O

40.8

10.6
10.4

10.2

Inn
I1.0

10.8

40.6

10.4

40.2

IO.O



THE GEOMETRIC DECOMPOSITION: APPLICATION TO GLOBAL FIELDS

L/K at the

Ratio of Anisotropic EKE to Total EKE, ORCA12, Longitude -25
bottom .‘ [EKE, ORCAL. Longitude 25, |
| ol | ‘ Io.s
—2000F l | ‘ i [N
- | ' | l 10.6
- near-bottom eddy field is g —3000F R | ’ | } 1 Hoa
highly anisotropic almost 1000 | il I <P ‘ |
everywhere: average L/ 000 L ML | Ll 0.2
K=0.65 I'l ' Io 0
_ ] 605 305 0S 25N '
- near-bottom anisotropy
intensifies above sloping n
bathymetry and reduces | " 1) ‘
for regions of locally flat —1000 54
bathymetry shows a — —2000
strong vertical coherence 2 3000
)
- eddy orientation tends to O o000 'I
align with the underlying “' ll }
. . -5000
Isobath and also remain

vertically coherent with
depth Latitude

RED: along isobath
BLUE: across isobath



THE GEOMETRIC DECOMPOSITION: APPLICATION TO GLOBAL FIELDS

L/K at the

bOttO m Ratio of Anisotropic EKE to Total EKE, ORCA12, Longitude -25

Tt N 1 o 1.0
| | | ‘ ' | [ Io.s
—2000} Il ‘ = | |
i&—3ooo- | | ‘ l 'r | i
' | | | \ 10.4
e vertical coherence 1000 | | | ln.<ﬁt | ] | N
suggests a significant 000l | ~» | i -
portion of the anisotropic - 605 05 0 . 0.0

signs Is barotropic

e —> promise for a N itk "ﬂ \ |
parameterization based |
on EKE & underlying g_mo M
bathymetry to operate & ool & 114

on the barotropic flow
—-5000

30S 0S ZéN
Latitude

RED: along isobath
BLUE: across isobath



Extension to 3D

M+ P N 0

Y | v o

EP flux —9 R 0
tensor

M = % (u’ u — v’v’), N = u'v' = eddy momentum fluxes

P = 2—]1\,31?’ b’ = eddy potential energy
R = ]%b’ u, S = ]%b’v’ = eddy buoyancy fluxes
0 0



THE GEOMETRIC DECOMPOSITION: EXTENSION TO 3D

1. Geometric Interpretation

eddy energy
E =K+ P

1. momentum flux anisotropy
| _ VM? + N?

\'
nm—

2. momentum flux orlentatlon

cos(20,,) = —24

|3.buoyancy flux anisotropy  b/N,

|~y — No VRZ 4+ 82
=725 " kp // |

4.buoyancy flux orientation k

cos(0y) = R

5.eddy energy partition angle

% — COs?\, P — sin?A\



THE GEOMETRIC DECOMPOSITION: EXTENSION TO 3D

2. Dynamical Interpretation

M+ P N 0

Y | v o

) R 0
E-P fluxes Z
EP flux divergence
(eddy momentum forcing) V * Z
é

dd icity fl
s EV x [V -3

(eddy vorticity forcing)



THE GEOMETRIC DECOMPOSITION: EXTENSION TO 3D

3. The Geometric Decomposition

| -
-
L~

EY, (c0s(20,,)cos*A + sin’L)
EY,sin(20,,)cos*\

](,—ZEybcos sin(2).)

EY,sin(20,,)cos*\
EY,, (sin"A — cos(20,,)cos*])
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Application to a mixed instability jet
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Application to a mixed instability jet
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THE GEOMETRIC DECOMPOSITION OF EDDY-MEAN FLOW INTERACTIONS

In summary...

* anew framework to describe eddy-mean flow
interactions in terms of spatial patterns of
variance ellipse/ellipsoid geometry

* in 2D: describes the eddy vorticity flux divergence (‘the eddy forcing’) in terms of spatial
patterns of ellipse shape & orientation - specifically linear variations of these
properties around a region periphery in the integral form = a significant simplification
to the representation of the eddy forcing!

* in 3D: ellipsoid geometry encodes info on dominant orientation of eddy &
fluxes, partitioning of eddy energy <—> kinetic & potential forms, &
efficiency of eddy forcing relative to eddy energy; as in 2D, spatial patterns of ellipsoid
geometry are linked directly to the eddy forcing

* identifies the importance of resolving eddy shape (and not just eddy size/EKE) to
resolve eddy effects

e application to global fields in a high-resolution model suggests a possible
parameterization for eddy anisotropy & associated effects based on EKE and the
underlying bathymetry to operate on the barotropic flow
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