Background	Bayesian Inference for Diffusivities	Applications to simulated ocean drifters	Summary	Extra slides
00000	00 000 0	00 00000		000

Y.K. Ying, James R. Maddison, Jacques Vanneste

School of Mathematics The University of Edinburgh

Scales and scaling cascades in geophysical systems, 4th April, 2018

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへ⊙

round	Bayesian Inference for Diffusivities	Applications to simulated ocean drifters	Summary	Extra slides
0	00	00		000
	000	00000		000
	0			

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Outline

Background

Modelling the Turbulent Ocean

Bayesian Inference for Diffusivities

Formulation Computations Sampling

Applications to simulated ocean drifters

Specifications Results

Summary

Extra slides

Convergence Extra Examples

Background	
0000	

Applications to simulated ocean drifters 00 00000

Summary

Extra slides

Background The turbulent ocean

Eddies in the highly turbulent ocean. Image courtesy: NASA.

▲ロト ▲母 ト ▲目 ト ▲目 ト ● ○ ○ ○ ○ ○

Background	Bayesian Inference for Diffusivities	Applications to simulated ocean drifters	Summary	Extra slides
0000	00	00		000
	000	00000		000
	0			

What is turbulent diffusion/eddy diffusion?

Simple models for transport in the ocean: With a 'turbulent' velocity field $\mathbf{u} = \mathbf{u}(x, t), x \in \mathbb{R}^2$:

Passive scalar $c(x, t)$:	Particle position X_t :
$\partial_t \boldsymbol{c} + \boldsymbol{u}(\boldsymbol{x}, \boldsymbol{t}) \cdot \nabla \boldsymbol{c} = \kappa_m \nabla^2 \boldsymbol{c},$	$dX_t = \mathbf{u}(X_t, t)dt + \sqrt{2\kappa_m}dW_t,$

◆□▶ ◆圖▶ ◆臣▶ ◆臣▶ ─ 臣

 $\Box \kappa_m$: small-scale diffusivity.

Background	Bayesian Inference for Diffusivities	Applications to simulated ocean drifters	Summary	Extra slides
00000	00	00		000
	000	00000		000
	0			

What is turbulent diffusion/eddy diffusion?

Simple models for transport in the ocean: With a 'turbulent' velocity field $\mathbf{u} = \mathbf{u}(x, t), x \in \mathbb{R}^2$:

Passive scalar $c(x, t)$:	Particle position X_t :
$\partial_t \boldsymbol{c} + \boldsymbol{u}(\boldsymbol{x}, \boldsymbol{t}) \cdot \nabla \boldsymbol{c} = \kappa_m \nabla^2 \boldsymbol{c},$	$dX_t = \mathbf{u}(X_t, t)dt + \sqrt{2\kappa_m}dW_t,$

 $\Box \kappa_m$: small-scale diffusivity.

'Averaging'/'Homogenization':

Decompose $\mathbf{u}(x, t) = \mathbf{v}(x) + \mathbf{u}'(x, t)$:

Averaged scalar $\bar{c}(x, t)$:	Particle position \bar{X}_t :
$\partial_t \bar{c} + \mathbf{v}(x) \cdot \nabla \bar{c} = \nabla \cdot (\kappa_e(x) \nabla \bar{c}),$	$dar{X}_t = ilde{oldsymbol{v}}(ar{X}_t)dt + \sqrt{2\kappa_e(ar{X}_t)}dW_t,$

・ロット (雪) (日) (日) (日)

 $\Box \kappa_e(x): \text{ turbulent/eddy diffusivity tensor field.} \\ \Box \tilde{\mathbf{v}}(x) = \mathbf{v}(x) + \nabla \cdot \kappa_e(x): \text{ 'effective' drift.}$

Background	Bayesian Inference for Diffusivities	Applications to simulated ocean drifters	Summary	Extra slides
0000	00	00		000
	0	00000		000

Relation between stochastic processes and the advection-diffusion equation

Stochastic Differential Equations

Consider the trajectory of a passive particle X_t at time t:

$$dX_t = \left[\mathbf{v}(X_t) + \nabla \cdot \kappa_e(X_t)\right] dt + \sqrt{2\kappa_e(X_t)} dW_t,$$

Fokker-Planck Equations

The transition probability density $p(x, t|x_0)$ of a passive particle:

$$\partial_t p + \mathbf{v}(x) \cdot \nabla p = \nabla \cdot (\kappa_e \nabla p),$$

 $p(x, 0|x_0) = \delta(x - x_0).$ (Initial condition)

Interpretation:

The transition density of an SDE is a passive scalar with an initial Dirac-Delta profile

Background	
00000	

Applications to simulated ocean drifters 00 00000

Summary

Extra slides

Description

How to estimate the turbulent diffusivity $\kappa(x)$ in the ocean?

Figure: Some available drifters across the globe.

[Image retrieved from website of The Global Drifter Program]

Background	Bayesian Inference for Diffusivities	Applications to simulated ocean drifters	Summary	Extra slides
0000	00 000 0	00 00000		000

Description

How to estimate the turbulent diffusivity $\kappa(x)$ in the ocean?

Inference

В

Given the position data $\{X_t\}$, at discrete time $t = t_n$ from the ocean drifters:

1. Seek $\mathbf{u}(x)$ and $\kappa(x)$ of

$$dX_t = \mathbf{u}(X_t)dt + \sqrt{2\kappa(X_t)}dW_t$$

that 'fits' with the observation data.

2. Quantify the **uncertainty** of the inferred $\mathbf{u}(x)$ and $\kappa(x)$

Background	Bayesian Inference for Diffusivities	Applications to simulated ocean drifters	Summary	Extra slides
00000	• 0 000 0	00 00000		000

Methodology: How to diagnose eddy diffusivity?

Conventional Approach:

Given the eddy velocities $\{u'(t)\}$ of drifters, integrate the velocity autocorrelation function

$$\kappa = \int_0^\infty ig\langle u'(t) u'(t+ au) ig
angle \, d au$$

 \Rightarrow Obtain one estimate for κ

ackground	Bayesian Inference for Diffusivities	Applications to simulated ocean drifters	Summary	Extra slides
0000	•0	00		000
	000	00000		000
	0			

Methodology: How to diagnose eddy diffusivity?

Conventional Approach:

Given the eddy velocities $\{u'(t)\}$ of drifters,

integrate the velocity autocorrelation function

$$\kappa = \int_0^\infty ig\langle u'(t) u'(t+ au) ig
angle \, d au$$

 \Rightarrow Obtain one estimate for κ

Bayesian SDE Inference Approach:

Given sequences of positions $\{X_t\}$ at $t = t_n, n = 0, 1, ..., N$, formulate the posterior distribution

$$p(\mathbf{u},\kappa|\{X_t\})$$

 \Rightarrow Obtain a probability distribution on **u** and κ , conditioned on the available data $\{X_t\}$

Bayesian Inference for Diffusivities ○● ○○○ Applications to simulated ocean drifters

Summary

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

Extra slides

Bayesian Inference

Bayes' Theorem **RECALL:** Probability 101:

> P(A|B)P(B) = P(B|A)P(A) $\Rightarrow P(A|B) \propto P(B|A)P(A)$

Bayesian Inference for Diffusivities ○● ○○○ Applications to simulated ocean drifters

Summary

Extra slides

Bayesian Inference

Bayes' Theorem **RECALL:** Probability 101:

> P(A|B)P(B) = P(B|A)P(A) $\Rightarrow P(A|B) \propto P(B|A)P(A)$

TARGET: Posterior distribution density $p(\mathbf{u}, \kappa | \{X_t\})$:

 $p(\mathbf{u},\kappa|\{X_t\}) \propto p(\{X_t\}|\mathbf{u},\kappa)p(\mathbf{u},\kappa)$

Fill in the gaps:

- 1. Proportional factor \Rightarrow normalisation constant for a p.d.f.
- 2. Likelihood $p({X_t} | \mathbf{u}, \kappa) \Rightarrow$ needs to be computed
- 3. Prior $p(\mathbf{u},\kappa) \Rightarrow$ subjectively chosen

Bayesian Inference for Diffusivities ○● ○○○ Applications to simulated ocean drifters

Summary

Extra slides

Bayesian Inference

Bayes' Theorem **RECALL:** Probability 101:

> P(A|B)P(B) = P(B|A)P(A) $\Rightarrow P(A|B) \propto P(B|A)P(A)$

TARGET: Posterior distribution density $p(\mathbf{u}, \kappa | \{X_t\})$: $p(\mathbf{u}, \kappa | \{X_t\}) \propto p(\{X_t\} | \mathbf{u}, \kappa) p(\mathbf{u}, \kappa)$

Fill in the gaps:

- 1. Proportional factor \Rightarrow normalisation constant for a p.d.f.
- 2. Likelihood $p({X_t} | \mathbf{u}, \kappa) \Rightarrow$ needs to be computed
- 3. Prior $p(\mathbf{u},\kappa) \Rightarrow$ subjectively chosen

Bayesian Inference for Diffusivities

Applications to simulated ocean drifters

Summary

Extra slides

Bayesian Inference Computational Aspects

1. How to construct the likelihood $p({X_t} | \mathbf{u}, \kappa)$?

= Probability of reproducing the data $\{X_t\}$, given (\mathbf{u}, κ) **Evaluation:**

1. Pair up the observed positions $\{X_t\}$ consecutively

$$\{X_0, X_1\}, \{X_1, X_2\}, \ldots, \{X_{n-1}, X_n\},\$$

where $h = t_{i+1} - t_i$ is the duration between observation

- 2. Evaluate transition density $p(X_{i+1}, h|X_i)$
- 3. Likelihood $p({X_t} | (\mathbf{u}, \kappa)) = \prod_i p(X_{i+1}, h | X_i)$

Bayesian Inference for Diffusivities

Applications to simulated ocean drifters

Summary

Extra slides

Bayesian Inference Computational Aspects

1. How to construct the likelihood $p({X_t} | \mathbf{u}, \kappa)$?

= Probability of reproducing the data $\{X_t\}$, given (\mathbf{u}, κ) **Evaluation:**

1. Pair up the observed positions $\{X_t\}$ consecutively

$$\{X_0, X_1\}, \{X_1, X_2\}, \ldots, \{X_{n-1}, X_n\},\$$

where $h = t_{i+1} - t_i$ is the duration between observation

- 2. Evaluate transition density $p(X_{i+1}, h|X_i)$
- 3. Likelihood $p({X_t} | (\mathbf{u}, \kappa)) = \prod_i p(X_{i+1}, h | X_i)$

Bayesian Inference for Diffusivities $\circ \circ$ $\circ \bullet \circ$ Applications to simulated ocean drifters

Summary

Extra slides

Bayesian Inference

Bayes' Theorem **RECALL:** Probability 101:

> P(A|B)P(B) = P(B|A)P(A) $\Rightarrow P(A|B) \propto P(B|A)P(A)$

TARGET: Posterior distribution density $p(\mathbf{u}, \kappa | \{X_t\})$: $p(\mathbf{u}, \kappa | \{X_t\}) \propto p(\{X_t\} | \mathbf{u}, \kappa) p(\mathbf{u}, \kappa)$

Fill in the gaps:

- 1. Proportional factor \Rightarrow normalisation constant for a p.d.f.
- 2. Likelihood $p({X_t} | \mathbf{u}, \kappa) \Rightarrow$ needs to be computed
- 3. Prior $p(\mathbf{u},\kappa) \Rightarrow$ subjectively chosen

Bayesian Inference for Diffusivities $\circ \circ$ $\circ \circ \bullet$

Applications to simulated ocean drifters So So Socooo

Summary

▲ロト ▲帰 ト ▲ ヨ ト ▲ ヨ ト ・ ヨ ・ の Q ()

Extra slides

Bayesian Inference Computational Aspects

- 2. How to take Prior $p(\mathbf{u}, \kappa)$?
- = Preference for (\mathbf{u}, κ) from experts' opinion **Choice of prior:**
 - $(\mathbf{u},\kappa) \sim \text{Uniform distribution on a given range}$ $\Rightarrow \text{No preference}$

Extra slides

Bayesian Inference Machinery Sampling

What to do with the posterior density $p(\mathbf{u}, \kappa | \{X_t\})$?

Sampling by Metropolis-Hasting Algorithm

 \iff produce a histogram

Inference from the posterior density $p(\mathbf{u}, \kappa | \{X_t\})$

- 1. Estimate (\mathbf{u}, κ) via
 - Posterior mean
 - Maximum a posteriori (MAP) estimates
- 2. Quantify uncertainties via
 - Posterior variance
 - Local modes

[Lost? Examples coming up in a few slides!]

Background	
00000	

Particles in an Ideal Ocean Model

- *Data input:* Daily positions of 1024 passive particles over 10 years using the quasi-geostrophic equations (similar to *Karabasov et al*, *Ocean Modelling 2009*)
- 'Spaghetti' plot of trajectories of 64 particles: Click me

Ba	ckground	
oc	000	

Extra slides

Particles in an Ideal Ocean Model

Inference model

- 1. Resolution: Partition the domain into bins of size 240km \times 240km
- 2. Fields: For each bin, impose a velocity and diffusivity field

$$\mathbf{u}(x, y) = \begin{bmatrix} A_{11} & A_{12} \\ A_{21} & -A_{11} \end{bmatrix} \begin{pmatrix} x \\ y \end{pmatrix} + \begin{pmatrix} b_1 \\ b_2 \end{pmatrix},$$
$$\kappa(x, y) = \begin{bmatrix} \kappa_{11} & \kappa_{12} \\ \kappa_{21} & \kappa_{22} \end{bmatrix}.$$

3. Locality: Group the consecutive positions of particles {X_i, X_{i+1}} into bins based on their starting points {X_i}

Background	
00000	

Applications to simulated ocean drifters

Summary

Extra slides

Passive Particles in an Ideal Ocean Model

Focus on two cells: jet vs not on jet

 \Box Boxes: the chosen two cells:

Background	Bayesian Inference for Diffusivities	Applications to simulated ocean drifters	Summary	Extra slides
00000	00 000 0	00 0000		000

Passive Particles in an Ideal Ocean Model

Posterior Distributions in two selected cells, sampling interval h = 64 days Velocity fields u(x, y), v(x, y) at cell centres \Rightarrow faster flow, but more uncertain, on the jet.

▶ 目 のへで

Background	Bayesian Inference for Diffusivities	Applications to simulated ocean drifters	Summary	Extra slides
00000	00	○○ ○○●○○		000
	0			

Particles in an Ideal Ocean Model

Posterior Distributions in two selected cells, sampling interval h = 64 days Diffusivity $\kappa = \begin{bmatrix} \kappa_{11} & \kappa_{12} \\ \kappa_{21} & \kappa_{22} \end{bmatrix}$ at cell centres \Rightarrow much larger and much more uncertain diffusivity on the jet.

Background	
00000	

Applications to simulated ocean drifters

Summary

・ロト ・聞ト ・ヨト ・ヨト

э

Extra slides

Particles in an Ideal Ocean Model

A representative number to simplify the analysis?

Locate the mode of the probability distribution \Rightarrow MAP estimates

Background	Bayesian Inference for Diffusivities	Applications to simulated ocean drifters	Summary	Extra slides
00000	00 000 0	00 0000●		000

Particles in an Ideal Ocean Model

MAP estimates for diffusivity field (Sampling interval h = 64 days)

Diagonal components of the diffusivity tensor κ_{11} and κ_{22} :

Figure: κ_{11} [m²/s] on a log10-scale Figure: κ_{22} [m²/s] on a log10-scale

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ ○臣○

Background	
00000	

Extra slides

Take Home Messages

- A Bayesian Inference for Ocean Diffusivities
 - A probabilistic inference for ${\bf u}$ and κ
 - Uncertainty quantification with ease
 - No a priori decomposition of velocity fields required
 - Capable of inferring an anisotropic diffusivity tensor $\boldsymbol{\kappa}$
- A physically meaningful diffusivity κ
 - Robust inference: Convergence over sampling interval h
- Importance in resolving the spatial variation in velocity field $\mathbf{u}(x, y)$
 - Robust inference: Convergence requires sufficient resolution of velocity fields

ackground	Bayesian Inference for Diffusivities	Applications to simulated ocean drifters	Summary
0000	00	00	
	000	00000	
	0		

Future work

- Comparisons with existing diffusivity diagnostics
 - Lagrangian methods
 - Passive tracer methods
- Relax the locality assumptions
 - Ensure globally smooth fields are inferred
 - Make diffusivity diagnosis possible in the fast regions

▲ロト ▲帰 ト ▲ ヨ ト ▲ ヨ ト ・ ヨ ・ の Q ()

• Inference using real drifters!

Background	
00000	

Extra slides

Particles in an Ideal Ocean Model

MAP estimates for diffusivity field (Sampling interval h = 64 days)

Diagonal components of the diffusivity tensor κ_{11} and κ_{22} :

Figure: κ_{11} [m²/s] on a log10-scale Figure: κ_{22} [m²/s] on a log10-scale

Background	
00000	

Extra slides

Particles in an Ideal Ocean Model

MAP estimates for diffusivity field (Sampling interval h = 1 days)

Diagonal components of the diffusivity tensor κ_{11} and κ_{22} :

Figure: κ_{11} [m²/s] on a log10-scale Figure: κ_{22} [m²/s] on a log10-scale

Background	
00000	

Applications to simulated ocean drifters 00 00000 Summary

Extra slides

Particles in an Ideal Ocean Model

What sampling interval h to use?

MAP Fields at cell centres vs sampling interval *h* [Left: On the jet; Right: outside the jet]

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ - □ - の Q ()

Background	Bayesian Inference for Diffusivities	Applications to simulated ocean drifters	Summary	Extra slides
00000	00	00 00000		000 000

Test Case - Taylor-Green Vortex

Particle advection:

$$dX_t = \mathbf{u}^{TG}(X_t)dt + \sqrt{2\kappa_m}dW_t, \quad \text{where } \mathbf{u}^{TG}(x,y) = \begin{pmatrix} \sin(x)\cos(y) \\ -\cos(x)\sin(y) \end{pmatrix},$$

Figure: Streamlines of Taylor-Green Vortex; Video at [Click me]

Background Bayesian Inference for Diffusivities	Applications to simulated ocean drifters oo ooooo	Summary	Extra slides ○○○ ○●○
---	---	---------	----------------------------

Test Case - Taylor-Green Vortex

• For t sufficiently large, coarse-graining the SDE

$$dX_t = \mathbf{u}^{TG}(X_t)dt + \sqrt{2\kappa_m}dW_t \to dX_t^c = \sqrt{2\kappa}dW_t.$$

- Simulated Trajectories
 - 1. Number of Particles: 1024
 - 2. Initial conditions: Located at the origin
 - 3. $\kappa_m = 0.1 \rightarrow \kappa \approx 0.342I$

Figure: Simulated Trajectories, up to t = 50

Figure: Simulated Trajectories, up to t = 2500

Background	Bayesian Inference for Diffusivities	Applications to simulated ocean drifters	Summary	Extra slides
00000	00	00		000
	000	00000		000

Test Case - Taylor-Green Vortex

Bayesian Inference: Impose the coarse-grained model

$$dX_t = \begin{pmatrix} u \\ v \end{pmatrix} dt + \sqrt{2 \begin{pmatrix} K_{11} & K_{12} \\ K_{21} & K_{22} \end{pmatrix}} dW_t$$

• Plots of mean quantities over sampling interval h

Figure: Mean velocity (u, v) against sampling interval h

Figure: Mean diffusivity *K* against sampling interval *h*

イロト 不得 トイヨト イヨト

うくで

-