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Background
The turbulent ocean

Eddies in the highly turbulent ocean. Image courtesy: NASA.
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Background
What is turbulent diffusion/eddy diffusion?

Simple models for transport in the ocean:
With a ‘turbulent’ velocity field u = u(x , t), x ∈ R2:

Passive scalar c(x , t): Particle position Xt :

∂tc + u(x , t) · ∇c = κm∇2c, dXt = u(Xt , t)dt +
√

2κmdWt ,

�κm: small-scale diffusivity.

‘Averaging’/‘Homogenization’:
Decompose u(x , t) = v(x) + u′(x , t):

Averaged scalar c̄(x , t): Particle position X̄t :

∂t c̄ + v(x) · ∇c̄ = ∇ · (κe(x)∇c̄), dX̄t = ṽ(X̄t)dt +
√

2κe(X̄t)dWt ,

�κe(x): turbulent/eddy diffusivity tensor field.
� ṽ(x) = v(x) +∇ · κe(x): ‘effective’ drift.



Background Bayesian Inference for Diffusivities Applications to simulated ocean drifters Summary Extra slides

Background
What is turbulent diffusion/eddy diffusion?

Simple models for transport in the ocean:
With a ‘turbulent’ velocity field u = u(x , t), x ∈ R2:

Passive scalar c(x , t): Particle position Xt :

∂tc + u(x , t) · ∇c = κm∇2c, dXt = u(Xt , t)dt +
√

2κmdWt ,

�κm: small-scale diffusivity.

‘Averaging’/‘Homogenization’:
Decompose u(x , t) = v(x) + u′(x , t):

Averaged scalar c̄(x , t): Particle position X̄t :

∂t c̄ + v(x) · ∇c̄ = ∇ · (κe(x)∇c̄), dX̄t = ṽ(X̄t)dt +
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Background
Relation between stochastic processes and the advection-diffusion equation

Stochastic Differential Equations

Consider the trajectory of a passive particle Xt at time t:

dXt = [v(Xt) +∇ · κe(Xt)] dt +
√

2κe(Xt)dWt ,

Fokker-Planck Equations

The transition probability density p(x , t|x0) of a passive particle:

∂tp + v(x) · ∇p = ∇ · (κe∇p),

p(x , 0|x0) = δ(x − x0). (Initial condition)

Interpretation:
The transition density of an SDE is a passive scalar with an initial
Dirac-Delta profile
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Description
How to estimate the turbulent diffusivity κ(x) in the ocean?

Figure: Some available drifters across the globe.
[Image retrieved from website of The Global Drifter Program]
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Description
How to estimate the turbulent diffusivity κ(x) in the ocean?

Inference
Given the position data {Xt}, at discrete time t = tn from the
ocean drifters:

1. Seek u(x) and κ(x) of

dXt = u(Xt)dt +
√

2κ(Xt)dWt

that ‘fits’ with the observation data.

2. Quantify the uncertainty of the inferred u(x) and κ(x)
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Methodology: How to diagnose eddy diffusivity?

Conventional Approach:
Given the eddy velocities {u′(t)} of drifters,

integrate the velocity autocorrelation function

κ =

∫ ∞
0

〈
u′(t)u′(t + τ)

〉
dτ

⇒ Obtain one estimate for κ

Bayesian SDE Inference Approach:
Given sequences of positions {Xt} at t = tn, n = 0, 1, . . .N,

formulate the posterior distribution

p(u, κ| {Xt})

⇒ Obtain a probability distribution on u and κ, conditioned on
the available data {Xt}
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Bayesian Inference
Formulation

Bayes’ Theorem
RECALL: Probability 101:

P(A|B)P(B) = P(B|A)P(A)

⇒ P(A|B) ∝ P(B|A)P(A)

TARGET: Posterior distribution density p(u, κ| {Xt}):

p(u, κ| {Xt}) ∝ p({Xt} |u, κ)p(u, κ)

Fill in the gaps:

1. Proportional factor ⇒ normalisation constant for a p.d.f.

2. Likelihood p({Xt} |u, κ) ⇒ needs to be computed

3. Prior p(u, κ) ⇒ subjectively chosen
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Bayesian Inference
Computational Aspects

1. How to construct the likelihood p({Xt} |u, κ)?

= Probability of reproducing the data {Xt}, given (u, κ)

Evaluation:

1. Pair up the observed positions {Xt} consecutively

{X0,X1}, {X1,X2}, . . . , {Xn−1,Xn},

where h = ti+1 − ti is the duration between observation

2. Evaluate transition density p(Xi+1, h|Xi )

3. Likelihood p({Xt} |(u, κ)) =
∏

i p(Xi+1, h|Xi )
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Bayesian Inference
Computational Aspects

2. How to take Prior p(u, κ)?

= Preference for (u, κ) from experts’ opinion

Choice of prior:

(u, κ) ∼ Uniform distribution on a given range

⇒ No preference
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Bayesian Inference Machinery
Sampling

What to do with the posterior density p(u, κ|{Xt})?

Sampling by Metropolis-Hasting Algorithm
⇐⇒ produce a histogram

Inference from the posterior density p(u, κ|{Xt})

1. Estimate (u, κ) via
• Posterior mean
• Maximum a posteriori (MAP) estimates

2. Quantify uncertainties via
• Posterior variance
• Local modes

[Lost? Examples coming up in a few slides!]
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Particles in an Ideal Ocean Model
• Data input: Daily positions of 1024 passive particles over 10 years using

the quasi-geostrophic equations (similar to Karabasov et al, Ocean Modelling 2009)

• ‘Spaghetti’ plot of trajectories of 64 particles: Click me

https://youtu.be/titXc7hrJMQ
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Particles in an Ideal Ocean Model

Inference model

1. Resolution: Partition the domain into bins of size 240km× 240km

2. Fields: For each bin, impose a velocity and diffusivity field

u(x , y) =

[
A11 A12

A21 −A11

](
x
y

)
+

(
b1

b2

)
,

κ(x , y) =

[
κ11 κ12

κ21 κ22

]
.

3. Locality : Group the consecutive positions of particles {Xi ,Xi+1} into bins
based on their starting points {Xi}
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Passive Particles in an Ideal Ocean Model
Focus on two cells: jet vs not on jet

� Boxes: the chosen two cells:
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Passive Particles in an Ideal Ocean Model
Posterior Distributions in two selected cells, sampling interval h = 64 days

Velocity fields u(x , y), v(x , y) at cell centres
⇒ faster flow, but more uncertain, on the jet.



Background Bayesian Inference for Diffusivities Applications to simulated ocean drifters Summary Extra slides

Particles in an Ideal Ocean Model
Posterior Distributions in two selected cells, sampling interval h = 64 days

Diffusivity κ =

[
κ11 κ12

κ21 κ22

]
at cell centres

⇒ much larger and much more uncertain diffusivity on the jet.
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Particles in an Ideal Ocean Model
A representative number to simplify the analysis?

Locate the mode of the probability distribution ⇒ MAP estimates
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Particles in an Ideal Ocean Model
MAP estimates for diffusivity field (Sampling interval h = 64 days)

Diagonal components of the diffusivity tensor κ11 and κ22:
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Figure: κ11 [m2/s] on a log10-scale
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Figure: κ22 [m2/s] on a log10-scale
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Take Home Messages

• A Bayesian Inference for Ocean Diffusivities
• A probabilistic inference for u and κ
• Uncertainty quantification with ease
• No a priori decomposition of velocity fields required
• Capable of inferring an anisotropic diffusivity tensor κ

• A physically meaningful diffusivity κ
• Robust inference: Convergence over sampling interval h

• Importance in resolving the spatial variation in velocity field
u(x , y)
• Robust inference: Convergence requires sufficient resolution of

velocity fields



Background Bayesian Inference for Diffusivities Applications to simulated ocean drifters Summary Extra slides

Future work

• Comparisons with existing diffusivity diagnostics
• Lagrangian methods
• Passive tracer methods

• Relax the locality assumptions
• Ensure globally smooth fields are inferred
• Make diffusivity diagnosis possible in the fast regions

• Inference using real drifters!
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Particles in an Ideal Ocean Model
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Particles in an Ideal Ocean Model
MAP estimates for diffusivity field (Sampling interval h = 1 days)

Diagonal components of the diffusivity tensor κ11 and κ22:
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Figure: κ11 [m2/s] on a log10-scale
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Particles in an Ideal Ocean Model
What sampling interval h to use?

MAP Fields at cell centres vs sampling interval h

[Left: On the jet; Right: outside the jet]
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Test Case - Taylor-Green Vortex
Particle advection:

dXt = uTG (Xt)dt +
√

2κmdWt , where uTG (x , y) =

(
sin(x) cos(y)
− cos(x) sin(y)

)
,

Figure: Streamlines of Taylor-Green Vortex; Video at [Click me]
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https://youtu.be/96hW-I_J7Kg
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Test Case - Taylor-Green Vortex
• For t sufficiently large, coarse-graining the SDE

dXt = uTG (Xt)dt +
√

2κmdWt → dXt
c =
√

2κdWt .

• Simulated Trajectories

1. Number of Particles: 1024
2. Initial conditions: Located at the origin
3. κm = 0.1 → κ ≈ 0.342I

Figure: Simulated Trajectories,
up to t = 50

Figure: Simulated Trajectories,
up to t = 2500
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Test Case - Taylor-Green Vortex

• Bayesian Inference: Impose the coarse-grained model

dXt =

(
u
v

)
dt +

√
2

(
K11 K12

K21 K22

)
dWt

• Plots of mean quantities over sampling interval h
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Figure: Mean velocity (u, v)
against sampling interval h
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