The interaction between atmospheric gravity waves and large-scale flows: an efficient description beyond the nonacceleration paradigm

<u>Gergely Bölöni,</u> Bruno Ribstein, Jewgenija Muraschko, Christine Sgoff, Junhong Wei, Ulrich Achatz

Gravity Waves in the Atmosphere

- main sources: orography, convection, jets/fronts
- mainly vertical energy (momentum) transport with $\vec{c}_g \Rightarrow$ interaction with the large scale flow ("drag")
- wave breaking ⇒ turbulence, dissipation, energy transfer to large scale flow ("drag")

イロト イポト イヨト イヨト

(Kim et al., 2003)

Motivation

Parametrization of atmospheric GWs

- GWs are not fully resolved by GCMs and NWP models ⇒ parametrization
 ⇒ (Wentzel-Kramers-Brillouin) WKB theory
- Currently used parametrizations: steady state approximation
 instantenous propagation through constant resolved flow
 instantenous data via wave breaking only
 - \Rightarrow instantenous drag via wave breaking only!
- Proposal for improvement: direct weakly-nonlinear coupling between the GW and the resolved flow ⇐⇒ transient propagation ⇐⇒ continuous drag on the resolved flow during propagation + drag through wave breaking

WKB theory

Wave resolving system (2-D Euler equations, no rotation):

$$\frac{Du}{Dt} + c_p \theta \frac{\partial \pi}{\partial x} = 0$$
$$\frac{Dw}{Dt} + c_p \theta \frac{\partial \pi}{\partial z} + g = 0$$
$$\frac{D\theta}{Dt} = 0$$
$$\frac{D\theta}{Dt} = 0$$
$$\frac{D\pi}{Dt} + \frac{\kappa}{1 - \kappa} \pi \left(\frac{\partial u}{\partial x} + \frac{\partial w}{\partial z}\right) = 0$$

with Exner pressure Pot. temperature

$$\begin{split} \frac{D}{Dt} &= \frac{\partial}{\partial t} + u \frac{\partial}{\partial x} + w \frac{\partial}{\partial z} \\ \pi &= (p/p_0)^{\kappa} \\ \theta &= T(p_0/p)^{\kappa} = T/\pi \\ \kappa &= R/c_p \end{split}$$

Simplification ingredients:

- Decomposition of the fields: $f = f_b + f_w$
- WKB assumption: $f_w(x, z, t) = \operatorname{Re} F_w(Z, T) e^{i \left[kx + \frac{\phi(Z, T)}{\epsilon}\right]}$ with $Z = \epsilon z, T = \epsilon t, \ m = \partial \phi / \partial Z$ and $\omega = -\partial \phi / \partial T$
- Scaling for the gravity waves: $\epsilon = \mathcal{L}_w/H_\theta << 1$: weak stratification

WKB theory

WKB assumption in nature:

WKB theory

- At leading order $\mathcal{O}(\epsilon^2)$: dispersion-, and polarization relations \Rightarrow ray equations
- At next order $\mathcal{O}(\epsilon^3)$: wave action conservation and the mean-flow equations
- The coupled system (Achatz et al., 2010):

• Problem: if rays crossing \Rightarrow caustics: several m at same height $z \Rightarrow$ e.g. c_{gz} multivalued BUT! $\mathcal{A} = \mathcal{A}(z, t) \Rightarrow$ wave action conservation ill-defined \Rightarrow numerical problems

WKB theory in phase space

• Solution: extension of the model to a 2D phase space (z,m)

 "Slicing up" the wave action density to several m intervals ⇒ phase-space wave action density:

$$\mathcal{N}(z,m,t) = \int\limits_{R} \mathcal{A}_{\alpha}(z,t)\delta[m-m_{\alpha}(z,t)]d\alpha$$

Eulerian view

$$\frac{\partial \mathcal{N}}{\partial t} + \frac{\partial (c_{gz}\mathcal{N})}{\partial z} + \frac{\partial (\dot{m}\mathcal{N})}{\partial m} = 0$$

- ... and we have $\frac{\partial c_{gz}}{\partial z} + \frac{\partial \dot{m}}{\partial m} = 0$
- Lagrangian view

Hertzog et al., 2002, Muraschko et al., 2015

$$\frac{\partial \mathcal{N}(z,m,t)}{\partial t} + c_{gz} \frac{\partial \mathcal{N}(z,m,t)}{\partial z} + \dot{m} \frac{\partial \mathcal{N}(z,m,t)}{\partial m} = 0$$

WKB theory in phase space

• Coupled wave - meanflow equations in phase space:

- ullet phase space wave action density ${\cal N}$ conserved along ray trajectories
- multiple m values allowed at each location $z \rightarrow$ spectral (non-monochromatic) treatment \rightarrow no caustics problems
- extension to Muraschko et al., 2015: isothermal background with an atmosphere-like density profile, representation of turbulent wave breaking

Mean flow

э

WKB theory in phase space + wave breaking

• saturation occurs if static instability sets in (*Lindzen 1981*), i.e. $\partial \theta_w / \partial z + d\overline{\theta} / dz < 0$ or, after an additional multiplication by $g/\overline{\theta}$

$$\frac{\partial b_w}{\partial z} + N^2 < 0$$

• with the ansatz $b_w(x,z,t) = \operatorname{Re} B_w(Z,T) e^{i \left\lfloor kx + \frac{\phi(Z,T)}{\epsilon} \right\rfloor}$ with $m = \partial \phi / \partial Z$ this amounts in

$$|m||B_w| > N^2$$

• monochromatic \Rightarrow spectral

$$\int_{-\infty}^{\infty} m^2 \frac{d|B_w|^2}{dm} dm = \frac{2N^2}{\bar{\rho}} \int_{-\infty}^{\infty} m^2 \hat{\omega} \mathcal{N} dm > \alpha^2 N^4$$

where α is a parameter accounting for the uncertainty of the criterion

 If saturation ⇒ wave action density N is reset to a value that sets back stability (height,- and scale-dependent eddy diffusivity coefficient).

Methodology

- LES: fully non-linear wave resolving reference (PincFloit, Rieper et al., 2013)
- WKB-eu: Eulerian WKB model
- WKB-la: Lagrangian WKB model
- WKB-st: steady-state WKB model

Idealized cases (Bölöni et al., 2016)

- hydorostatic and nonhydrostatic wavepackets: $1 < rac{\lambda_x}{\lambda_z} < 30$
- static instability: $|m|B_w > N^2$
- ullet modulational instability: $|m|pprox |k| \Rightarrow$ wave packet is shrinking, its amplitude growing
- ullet critical layer: $U_{jet}pprox -c_p \Rightarrow m$ grows to infinity, wavepacket collapses
- refraction by a jet: U_{jet} weak $\Rightarrow m$ only slightly modified

• reflection from a jet:
$$U_{jet} \geq rac{N}{k} \left(1 - rac{k}{\sqrt{k^2 + m^2}}
ight) \Rightarrow m$$
 and c_{gz} changes sign

 $Main \ question: \ relative \ importance \ of \ direct \ wave-meanflow \ interaction \ and \ wave \ breaking$

▲ □ ▶ ▲ □ ▶ ▲ □ ▶

Induced wind, refraction by a jet $(\lambda_x = 10km, \lambda_z = 1km)$

Wave energy, reflection from a jet ($\lambda_x = 10 km, \lambda_z = 1 km$) Bölöni et al., 2016

with the vertically integrated energy:

$$\bar{E}_w = \int_0^{L_z} dz E_w$$
$$\bar{E}_m = \int_0^{L_z} dz E_m$$
$$\bar{E}_{tot} = \bar{E}_w + \bar{E}_m$$

글 > 글

Bölöni et al., 2016

Static instability ($\lambda_x = \lambda_z = 1km$)

э

・ロト ・同ト ・ヨト ・ヨト

TRR181 workshop, Hamburg, 4 May 2017 Interactions of GWs and large-scale flows

WKB vs. WKB-steady-state

Wave field

Mean flow

WKB theory: transient coupled system

$$\begin{aligned} \frac{\mathrm{d}_{g}z}{\mathrm{d}t} &= \mp \frac{Nkm}{(k^2 + m^2)^{3/2}} \equiv c_{gz} \\ \frac{\mathrm{d}_{g}m}{\mathrm{d}t} &= \mp \frac{k}{(k^2 + m^2)^{1/2}} \frac{\mathrm{d}N}{\mathrm{d}z} - k \frac{\mathrm{d} \mathbf{u}_{b}}{\mathrm{d}z} \equiv \dot{m} \\ \frac{\mathrm{d}g}{\mathrm{d}t} &= -\mathbf{A} \frac{\partial c_{gz}}{\partial z} \end{aligned}$$

$$\frac{\partial u_b}{\partial t} = -\frac{1}{\overline{\rho}} \frac{\partial}{\partial z} (kc_{gz} \mathcal{A})$$

The steady state approximation

$$\begin{array}{lll} \displaystyle \frac{\mathrm{d}_g z}{\mathrm{d}t} & = & \displaystyle \mp \frac{Nkm}{(k^2+m^2)^{3/2}} \equiv c_{gz} \\ \displaystyle \frac{\mathrm{d}_g m}{\mathrm{d}t} & = & 0 \\ \displaystyle \frac{\mathrm{d}_g \mathcal{A}}{\mathrm{d}t} & = & 0 \Leftarrow \Rightarrow c_{gz}(z) \mathcal{A}(z) = const. \end{array}$$

$$\frac{\partial \mathbf{u}_{b}}{\partial t} = -\frac{1}{\overline{\rho}} \frac{\partial}{\partial z} (kc_{gz} \mathbf{A})$$

 \Rightarrow no wave-mean-flow interaction! \Rightarrow wave breaking (constraining $\mathcal{A}(z)$) is necessary to get an induced wind! < ロ > (同 > (回 > (回 >))

э

TRR181 workshop, Hamburg, 4 May 2017 Interactions of GWs and large-scale flows

WKB vs. WKB-steady-state

Static instability ($\lambda_x = \lambda_z = 1km$)

Bölöni et al., 2016

TRR181 workshop, Hamburg, 4 May 2017 Interactions of GWs

Interactions of GWs and large-scale flows

Based on the idealized numerical simulations presented here...

- The direct weakly-nonlinear coupling between the GW and the meanflow is an important mechanism of wave-meanflow interactions.
- Wave breaking is also important but has a second order role in describing the interaction betwen the GW and the meanflow.
- The weakness of building GW parametrizations only on wave breaking has been demonstrated.
- The Lagrangian WKB model is very efficient: factor of 10-100 compared to a corresponding Eulerian model and factor of 1000-10000 compared to LES
- There is a good reason to try out coupled transient WKB approaches in gravity wave parametrizations

< ロ > < 同 > < 回 > < 回 >

Achatz, U., R. Klein, F. Senf (2010), Gravity waves, scale asymptotics, and the pseudo-incompressible equations. J. Fluid Mech., 141(663), 120-147, DOI:10.1017/S0022112010003411

Bölöni, G., Ribstein, B., Muraschko, J., Sgoff, C., Wei, J. and Achatz, U., 2016: The Interaction between Atmospheric Gravity Waves and Large-Scale Flows: An Efficient Description beyond the Nonacceleration Paradigm. J. Atm. Sci., 73, 4832 - 4852, DOI:10.1175/JAS-D-16-0069.1.

Hertzog A., Souprayen C., Hauchecorne A. (2002), Eikonal simulations for the formation and the maintenance of atmospheric gravity wave spectra. *J. Geophys. Res.*, 107, 4145, DOI: 10.1029/2001JD000815

Lindzen (1981), Turbulence and stress owing to gravity wave and tidal breakdown. J. Geophys. Res., 86, 9707–9714

Muraschko, J., M. D. Fruman, U. Achatz, S. Hickel and Y. Toledo (2014), On the application of Wentzel-Kramer-Brillouin theory for the simulation of the weakly nonlinear dynamics of gravity waves, *Q. J. R. Meteorol. Soc.*, 141(688), 676–697, DOI:10.1002/qj.2381.

Rieper, F., S. Hickel and U. Achatz (2013), A Conservative Integration of the Pseudo-Incompressible Equations with Implicit Turbulence Parameterization Mon. Wea. Rev., 141(3), 861-886, DOI:10.1175/MWR-D-12-00026.1.

Rieper, F., U. Achatz and R. Klein (2013), Range of validity of an extended WKB theory for atmospheric gravity waves: one-dimensional and two-dimensional case *J. Fluid Mech.*, 729, 330–363, DOI:10.1017/jfm.2013.307.

イロト イポト イヨト イヨト

Experiment	Wavepacket	Background	Domain size	Resolution
REFR	Cosine shape	non-Boussinesq	WKB Euler:	WKB Euler:
Refraction	$\lambda_x = 10 km, \lambda_z = 1 km$	T = 300K	$L_z = 40 km$	nz = 400, nm = 70
by a jet	$k=2\pi/\lambda_{\rm x}, m=2\pi/\lambda_{\rm z}$	$N \approx 0.018$	$m \in [0.001, 0.008]$	$dz \approx 100m, dm = 10^{-4}s^{-1}$
	$z_0=10 km, \Delta_{wp}=10 km$	$u_0 = 5m/s$	WKB Lagrange:	WKB Lagrange:
	$branch = -1, a_0 = 0.1$	$z_{\alpha} = 25km$	$L_z = 40 km$	$nz = 400, dz_{smooth} \approx 600m$
		$\Delta_u = 10 km$		$dz \approx 100m, n_{ray} = 4000$
			LES:	LES:
			$L_{\rm c}=40 km, L_{\rm x}=10 km$	nz = 1280, nx = 32
				$dz \approx 31m, dx = 310m$
REFL	Cosine shape	non-Boussinesq	WKB Euler:	WKB Euler:
Reflection	$\lambda_x = 10 km, \lambda_z = 1 km$	T = 300K	$L_z = 40 km$	nz = 400, nm = 180
from a jet	$k=2\pi/\lambda_{\rm x}, m=2\pi/\lambda_{\rm c}$	$N \approx 0.018$	$m \in [-0.01, 0.008]$	$dz \approx 100m, dm = 10^{-4}s^{-1}$
	$z_0=10 km, \Delta_{wp}=10 km$	$u_0=40m/s$	WKB Lagrange:	WKB Lagrange:
	$branch=-1, a_0=0.1$	$z_n = 25km$	$L_z = 40 km$	$nz = 400, dz_{smooth} \approx 600m$
		$\Delta_u = 10 km$		$dz\approx 100m, n_{ray}=4000$
			LES:	LES:
			$L_{\rm z}=40km, L_{\rm x}=10km$	nz = 2500, nx = 64
				$dz \approx 16m, dx = 156m$
PREFL	Cosine shape	non-Boussinesq	WKB Lagrange:	WKB Lagrange:
Partial	$\lambda_x = 6km, \lambda_z = 3km$	T = 300K	$L_z = 50 km$	$nz = 166, dz_{smooth} \approx 1800m$
Reflection	$k=2\pi/\lambda_{\rm x}, m=2\pi/\lambda_{\rm z}$	$N \approx 0.018$		$dz \approx 300m, n_{ray} = 4320$
from a jet	$z_0=10 km, \Delta_{wp}=10 km$	$u_0=9,75m/s$	LES:	LES:
	$branch=-1, a_0=0.1$	$z_{\alpha} = 25km$	$L_{\rm Z}=50 km, L_{\rm X}=6 km$	nz = 538, nx = 32
		$\Delta_u = 10 km$		$dz \approx 93m, dx = 187m$

TRR181 workshop, Hamburg, 4 May 2017

Interactions of GWs and large-scale flows

æ

State $\lambda_{e} = 30km, \lambda_{e} = 3km$ $T = 300k$ $L_{e} = 80km$ $n = 266, dz_{month} = 1800m$ Instability $k = 2\pi/\lambda_{a}, m = 2\pi/\lambda_{c}$ $N = 0.018$ LES: LES: Wavepacket $branch = -1, a_{0} = 0.5$ LES: LES: $dz = 300m, n_{eg} = 4320$ STNH Gaussian shape non-Beussines UKB Lagrange: $dz = 30km, dx = 940m$ Static $\lambda_{a} = 1km, \lambda_{a} = 1km$ $T = 300k$ $L_{c} = 30km, L_{a} = 30k$ $nz = 854, nx = 32$ Static $\lambda_{a} = 1km, \lambda_{c} = 1km$ $T = 300k$ $L_{c} = 30km$ $nz = 300, dz_{month} = 600m$ Instability $k = 2\pi/\lambda_{a}, m = 2\pi/\lambda_{c}$ $N = 0.018$ $L_{c} = 30km, L_{a} = 1km$ $nz = 960, nx = 32$ Non-hydrostatic $z_{0} = 10km, \Delta_{ep} = 10km$ LES: LES: $dz = 31m, dx \approx 310m$ Mit Osine shape non-Boussines KKB Lagrange: $nz = 600, nt_{month} = 600n$ Instability $k = 2\pi/\lambda_{a}, m = 2\pi/\lambda_{c}$ $N = 0.018$ $L_{c} = 00km, L_{a} = 10km, A_{c} = 400n$ Instability $k = 2\pi/\lambda_{a}, m = 2\pi/\lambda_{c}$ $N = 0.018$ Le = 00km, L_{a} = 10km, A_{c} = 30km $dz = 31$	STIH	Gaussian shape	non-Boussinesq	WKB Lagrange:	WKB Lagrange:	
Instability $k = 2\pi/\lambda_{x}, m = 2\pi/\lambda_{c}$ $N = 0.018$ LES: $LES:$ Hydrostatic $z_{0} = 10km, \Delta_{wp} = 25km$ LES: $LES:$ $LES:$ Wavepacket $branch = -1, a_{0} = 0.5$ LC $B0km, L_{u} = 30km$ $m = 854, nx = 32$ STINH Gaussian shape non-Boussinesq WKB Lagrange: $L_{z} = 30km, dx \approx 940m$ Static $\lambda_{u} = 1km, \lambda_{z} = 1km$ $T = 300K$ $L_{z} = 30km$ $m = 300, dz_{mouth} = 600m$ Instability $k = 2\pi/\lambda_{u}, m = 2\pi/\lambda_{z}$ $N = 0.018$ $L_{z} = 30km, L_{u} = 1km$ $m = 300, dz_{mouth} = 600m$ Non-hydrostatic $z_{0} = 10km, \Delta_{wp} = 10km$ IES: IES: $Lz = 31km, dx = 310m$ Marcypacket $branch = -1, a_{0} = 0.9$ $Lz = 30km, L_{u} = 1km$ $m = 960, nx = 32$ Modulational $\lambda_{v} = 1km$ $T = 300K$ $L_{z} = 60km, L_{u} = 1km$ $m = 600, dz_{mouth} = 600m$ Istability $k = 2\pi/\lambda_{u}, m = 2\pi/\lambda_{z}$ $N = 0.018$ $Lz = 60km, L_{u} = 1km$ $m = 1920, nx = 32$ $z_{0} = 10km, \Delta_{wp} = 2km$ $N = 0.018$ IES: IES: $Lz = 31km, dx = 310m$	Static	$\lambda_x = 30 km, \ \lambda_z = 3 km$	T = 300K	$L_z = 80 km$	$nz=266, dz_{amooth}\approx 1800m$	
Hydrostatic $z_0 = 10km, \Delta_{wp} = 25km$ LES: LES: LES: Wavepacket $branch = -1, a_0 = 0.5$ $L = 80km, L_u = 30km$ $n = 854, nx = 32$ Jacket $hranch = -1, a_0 = 0.5$ $u = 854, nx = 32$ $d z = 94m, d x = 940m$ STINH Gaussian shape non-Beussinesq WKB Lagrange: $u = 300, dz_{mouth} = 600m$ Instability $k = 2\pi/J_{n, m} - 2\pi/J_{k}$ $T = 300K$ $L_z = 30km$ $u = 300, dz_{mouth} = 600m$ Non-hydrostatic $z_0 = 10km, \Delta_{wp} = 10km$ $N = 0.018$ LES: LES: Wavepacket $branch = -1, a_0 = 0.9$ $L = 30km, L_u = 1km$ $n = 960, nx = 32$ Modulational $\lambda_v = 1km, \lambda_v = 1km$ $T = 300K$ $L_z = 60km, L_u = 1km$ $n = 600, dz_{mouth} = 600n$ Instability $k = 2\pi/J_{n, m}, A_z = 1km$ $T = 300K$ $L_z = 60km, L_u = 1km$ $n = 1920, nx = 32$ $z_0 = 10km, \Delta_{wp} = 20km$ $N = 0.018$ LES: LES: Les = 31m, dx $\approx 310m$ Instability $k = 2\pi/J_{n, m} = 2\pi/J_{n}$ $N = 0.018$ Leg = 60km, L_u = 14km $n = 1920, nx = 32$ $z_0 = 10km, \Delta_{wp} = 2km$	Instability	$k=2\pi/\lambda_x, m=2\pi/\lambda_z$	$N \approx 0.018$		$dz\approx 300m, n_{ray}=4320$	
Wavepacket branch = -1, a_0 = 0.5 L_z = 80km, L_z = 30km $nz = 884, nx = 32$ $dz = 940m, dx = 940m$ STINH Gaussian shape non-Bousinesq WKB Lagrange: WKB Lagrange: Static $\lambda_z = 1km, \lambda_z = 1km$ T = 300K $L_z = 30km$ $nz = 300, dz_{mouth} = 600m$ Instability $k = 2\pi/\lambda_x, m = 2\pi/\lambda_z$ N = 0.018 Lz = 30km, $L_u = 10m, n_{erog} = 4000$ Non-hydrostatic $z_0 = 10km, \Delta_{wp} = 10km$ N = 0.018 LES: LES: Wavepacket branch = -1, a_0 = 0.9 N = 0.018 Lz = 30km, $L_u = 1km$ $nz = 960, nx = 32$ Modulational $\lambda_u = 1km, \lambda_z = 1km$ T = 300K Lz = 60km $nz = 660, dz_{mouth} = 600m$ Instability $k = 2\pi/\lambda_u, m = 2\pi/\lambda_z$ N = 0.018 Lz = 60km $nz = 1920, nz = 32$ $z_0 = 10km, \Delta_{wp} = 20km$ N = 0.018 Lz = 60km, Lu = 1km $nz = 1920, nz = 32$ $z_0 = 10km, \Delta_{wp} = 2m/\lambda_z$ N = 0.018 Lz = 60km, Lu = 1km $nz = 1920, nz = 32$ $z_0 = 10km, \Delta_{wp} = 2m/\lambda_z$ N = 0.018 Lz = 60km, Lu = 1km $nz = 1920, nz = 32$ $z_0 = 10km, \Delta_{wp} = 2m/\lambda_z$ N = 0.018 <t< td=""><td>Hydrostatic</td><td>$z_0=10 km, \Delta_{wp}=25 km$</td><td></td><td>LES:</td><td>LES:</td><td></td></t<>	Hydrostatic	$z_0=10 km, \Delta_{wp}=25 km$		LES:	LES:	
Image: Since the set of the set	Wavepacket	$branch = -1, a_0 = 0.5$		$L_z = 80 km, L_x = 30 km$	nz = 854, nx = 32	
STNH Gaussian shape non-Boussinesq WKB Lagrange: WKB Lagrange: State $\lambda_{a} = 1km, \lambda_{c} = 1km$ $T = 300k$ $L_{c} = 30km$ $n = 500, d_{cmouth} = 600m$ Instability $k = 2\pi/\lambda_{a}, m = 2\pi/\lambda_{c}$ $N = 0.018$ $L_{c} = 30km$ $dz = 100n, n_{rop} = 4000$ Non-hydrostatic $z_{0} = 10km, \Delta_{up} = 10km$ IES: IES: IES: Wavepacket $branch = -1, a_{0} = 0.9$ $L_{c} = 30km, L_{a} = 1km$ $n = 960, nx = 32$ MI Cosine shape non-Bousinesq WKB Lagrange: $dz = 31m, dx = 310m$ Modulational $\lambda_{c} = 1km$ $T = 300K$ $L_{c} = 60km$ $n = 600, dz_{mouth} = 600n$ Instability $k = 2\pi/\lambda_{a}, m = 2\pi/\lambda_{c}$ $N = 0.018$ IES: IES: $L_{c} = 00km, L_{m} = 1km$ $T = 300k$ $L_{c} = 60km, L_{m} = 1km$ $n = 1920, nx = 32$ $z_{0} = 10km, \Delta_{up} = 0.1$ $L = 60km, L_{m} = 1km$ $n = 1920, nx = 32$ $dz = 31m, dx \approx 310m$ Ct Cosine shape non-Boussinesq KKB Lagrange: $L = 30km, L_{m} = 1600, dz_{mouth} = 600n$ Layer $\lambda_{m} = 10km, \Delta_{n} = 1km$ <td></td> <td></td> <td></td> <td></td> <td>$dz \approx 94m, dx \approx 940m$</td> <td></td>					$dz \approx 94m, dx \approx 940m$	
$ \begin{array}{llllllllllllllllllllllllllllllllllll$	STINH	Gaussian shape	non-Boussinesq	WKB Lagrange:	WKB Lagrange:	
$ \begin{array}{ c c c c } \mbox{Insubility} & k = 2\pi/\lambda_{x_1}m = 2\pi/\lambda_c & N = 0.018 & dz = 100m, n_{rop} = 4000 \\ \mbox{Non-hydrostatic} & z_0 = 10km, \Delta_{u_F} = 10km & LES: & LES: \\ \mbox{Wavepacket} & branch = -1, a_0 = 0.9 & L_c = 30km, L_u = 1km & nz = 960, nx = 32 \\ \mbox{d}zz = 31m, dx = 310m & dz = 31m, dx = 310m \\ \mbox{Modulational} & \lambda_u = 1km, \lambda_z = 1km & T = 300K & L_z = 60km & nz = 600, dz_{mooth} = 600m \\ \mbox{Insubility} & k = 2\pi/\lambda_u, m = 2\pi/\lambda_c & N = 0.018 & LES: & LES: \\ \mbox{d}z = 100m, n_{rop} = 4000 & LES: & LES: \\ \mbox{d}z = 00m, n_{rop} = 4000 & LES: & LES: \\ \mbox{d}z = 100m, n_{rop} = 4000 & LES: & LES: \\ \mbox{d}z = 00m, n_{rop} = 4000 & LES: & LES: \\ \mbox{d}z = 00m, n_{rop} = 4000 & LES: & LZ = 60km, L_u = 1km & nZ = 1920, nx = 32 \\ \mbox{d}z = 31m, dx \approx 310m & LZ = 30km, L_u = 10km & nZ = 30m, dz_{mooth} = 600m \\ \mbox{Layer} & k_1 = 10km, \lambda_c = 1km & T = 300K & L_c = 30km, L_u = 10km & nZ = 300, dz_{mooth} = 600m \\ \mbox{Layer} & k_1 = 2\pi/\lambda_u, m = 2\pi/\lambda_c & N = 0.018 & L_c = 30km & nZ = 300, dz_{mooth} = 600m \\ \mbox{Layer} & k_1 = 2\pi/\lambda_u, m = 2\pi/\lambda_c & N = 0.018 & L_c = 30km & nZ = 30m, dz_{mooth} = 600m \\ \mbox{Layer} & k_2 = 2\pi/\lambda_u, m = 2\pi/\lambda_c & N = 0.018 & L_c = 30km & nZ = 30m, dz_{mooth} = 600m \\ \mbox{Layer} & k_2 = 2\pi/\lambda_u, m = 2\pi/\lambda_c & N = 0.018 & L_c = 30km & L_c = 100, n_{rop} = 4000 \\ \mbox{Layer} & k_2 = 2\pi/\lambda_u, m = 2\pi/\lambda_c & N = 0.018 & L_c = 30km, L_u = 10km & nZ = 900, nX = 32 \\ \mbox{Layer} & k_2 = 10km, \Delta_{u_F} = 10km & n_0 = -11m/s & LES: & LES: \\ \mbox{Layer} & L_c = 30km, L_u = 10km & n_c = 900, nX = 32 \\ \mbox{Layer} & L_u = 30km, L_u = 10km & n_c = 900, nX = 32 \\ \mbox{Layer} & L_u = 30km, L_u = 10km & n_c = 900, nX = 32 \\ \mbox{Layer} & L_u = 30km, L_u = 10km & n_c = 900, nX = 32 \\ \mbox{Layer} & L_u = 30km, L_u = 10km & n_c = 900, nX = 32 \\ \mbox{Layer} & L_u = 30km, L_u = 10km & L_u = 30m, dX = 310m \\ \mbox{Layer} & L_u = 30km, L_u = 10km & L_u = 30m, dX = 310m \\ \mbox{Layer} & L_u = 30km, L_u = 10km & L_u = 30km, L_u = 30km, dX = 310m \\ \mbox{Layer} & L_u = 30km, L_u =$	Static	$\lambda_x = 1km, \lambda_z = 1km$	T = 300K	$L_z = 30km$	$nz=300, dz_{anooth}\approx 600m$	
$ \begin{array}{c c c c c c c c } \mbox{Non-hydrostatic} & z_0 = 10km, \Delta_{u_F} = 10km \\ \mbox{Wavepacket} & branch = -1, a_0 = 0.9 \\ \mbox{Wavepacket} & branch = -1, a_0 = 0.9 \\ \mbox{Wavepacket} & branch = -1, a_0 = 0.9 \\ \mbox{MI} & Cosine shape & non-Boussinesq & WKB Lagrange: \\ \mbox{Modulational} & \lambda_{\pi} = 1km, \lambda_{\pi} = 1km & T = 300K & L_{\pi} = 60km & n\pi = 600, nt_{\pi = 00} = 600n \\ \mbox{Insubility} & k = 2\pi/\lambda_{\pi}, m = 2\pi/\lambda_{\pi} & N = 0.018 & LES: \\ \mbox{Issubility} & k = 2\pi/\lambda_{\pi}, m = 2\pi/\lambda_{\pi} & N = 0.018 & LES: \\ \mbox{Issubility} & L_{\pi} = 0.1 & LES: \\ \mbox{Issubility} & L_{\pi} = 10km, \Delta_{u_F} = 0.018 & LES: \\ \mbox{Issubility} & L_{\pi} = 10km, \Delta_{u_F} = 0.11 & LES: \\ \mbox{Issubility} & L_{\pi} = 10km, \Delta_{u_F} = 0.11 & LES: \\ \mbox{Issubility} & L_{\pi} = 10km, \Delta_{u_F} = 10km & T = 300K & L_{\pi} = 300, nt_{mog} = 4000 \\ \mbox{Layer} & k = 2\pi/\lambda_{\pi}, m = 2\pi/\lambda_{\pi} & N = 0.018 & L_{\pi} = 30km, L_{\pi} = 10km & n\pi = 300, nt_{mog} = 4000 \\ \mbox{Layer} & k = 2\pi/\lambda_{\pi}, m = 2\pi/\lambda_{\pi} & N = 0.018 & LES: \\ \mbox{Issubility} & L_{\pi} = 10km, \Delta_{u_F} = 10km & n_{0} = -11m/s & LES: \\ \mbox{Issubility} & L_{\pi} = 30km, L_{\pi} = 10km & n_{\pi} = 960, nx = 32 \\ \mbox{Issubility} & L_{\pi} = 30km, L_{\pi} = 10km & n_{\pi} = 960, nx = 32 \\ \mbox{Issubility} & L_{\pi} = 10km & n_{\pi} = 960, nx = 32 \\ \mbox{Issubility} & L_{\pi} = 10km & LES: \\ \mbox{Issubility} & L_{\pi} = 10km & n_{\pi} = 960, nx = 32 \\ \mbox{Issubility} & L_{\pi} = 30km, L_{\pi} = 10km & n_{\pi} = 960, nx = 32 \\ \mbox{Issubility} & L_{\pi} = 10km & n_{\pi} = 960, nx = 32 \\ \mbox{Issubility} & L_{\pi} = 10km & L_{\pi} = 10km & n_{\pi} = 960, nx = 32 \\ \mbox{Issubility} & L_{\pi} = 10km & L_{\pi} = 10km & L_{\pi} = 30m, dx = 310m \\ \mbox{Issubility} & L_{\pi} = 30km, L_{\pi} = 10km & n_{\pi} = 960, nx = 32 \\ \mbox{Issubility} & L_{\pi} = 10km & L_{\pi} = 30m, dx = 310m \\ \mbox{Issubility} & L_{\pi} = 10km & L_{\pi} = 30m, dx = 310m \\ \mbox{Issubility} & L_{\pi} = 10km & L_{\pi} = 10km & L_{\pi} = 30m, dx = 310m \\ \mbox{Issubility} & L_{\pi} = 10km & $	Instability	$k=2\pi/\lambda_{\rm x}, m=2\pi/\lambda_{\rm z}$	$N \approx 0.018$		$dz \approx 100m, n_{ray} = 4000$	
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	Non-hydrostatic	$z_0=10 km, \Delta_{wp}=10 km$		LES:	LES:	
$ \begin{array}{ c c c c c } \hline & & & & & & & & & & & & & & & & & & $	Wavepacket	$branch = -1, a_0 = 0.9$		$L_z = 30km, L_x = 1km$	nz = 960, nx = 32	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$					$dz \approx 31m, dx \approx 310m$	
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	МІ	Cosine shape	non-Boussinesq	WKB Lagrange:	WKB Lagrange:	
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	Modulational	$\lambda_x = 1km, \lambda_z = 1km$	T = 300K	$L_z = 60 km$	$nz=600, dz_{amooth}\approx 600m$	
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	Instability	$k=2\pi/\lambda_{\rm x}, m=2\pi/\lambda_{\rm z}$	$N \approx 0.018$		$dz \approx 100m, n_{ray} = 4000$	
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		$z_0=10 km, \Delta_{wp}=20 km$		LES:	LES:	
CL Cosine shape non-Bousinesq WKB Lagrange: WKB Lagrange: Critical $\lambda_x = 10km, \lambda_x = 1km$ $T = 300k$ $L_z = 30km$ $nz = 300, dz_{mooth} = 600m$ Layer $k = 2\pi/\lambda_x, m = 2\pi/\lambda_z$ $N = 0.018$ $dz \approx 100, n_{my} = 4000$ $z_0 = 10km, \Delta_{wp} = 10km$ $u_0 = -11m/s$ LES: LES: branch = -1, a_0 = 0.1 $z_a = 25km$ $L_z = 30km, L_x = 10km$ $nz = 960, nx = 32$ $\Delta_x = 10km$ $L_z = 30km, L_x = 10km$ $nz = 960, nx = 32$		$branch = -1, a_0 = 0.1$		$L_{\rm z}=60km, L_{\rm x}=1km$	nz = 1920, nx = 32	
$ \begin{array}{cccc} {\bf CL} & {\bf Cosine shape} & {\bf non-Boussinesq} & {\bf WKB Lagrange:} & {\bf WKB Lagrange:} \\ {\bf Critical} & \lambda_{s} = 10km, \lambda_{c} = 1km & T = 300k & L_{c} = 30km & nc = 300, dz_{mooth} = 600m \\ {\bf Layer} & k = 2\pi/\lambda_{s}, m = 2\pi/\lambda_{c} & N = 0.018 & dz \approx 100, n_{my} = 4000 \\ z_{0} = 10km, \Delta_{wp} = 10km & u_{0} = -11m/s & {\bf IES:} & {\bf IES:} \\ branch = -1, a_{0} = 0.1 & z_{a} = 25km & L_{c} = 30km, L_{s} = 10km & nc = 960, nx = 32 \\ & \Delta_{s} = 10km & dz \approx 31m, dx \approx 310m \\ \end{array} $					$dz \approx 31m, dx \approx 310m$	
$ \begin{array}{c c} \mbox{Critical} & \lambda_{z} = 10km, \lambda_{z} = 1km & T = 300k & L_{z} = 30km & nz = 300, dz_{mooth} = 600m \\ \mbox{Layer} & k = 2\pi/\lambda_{z}, m = 2\pi/\lambda_{z} & N = 0.018 & dz \approx 100, n_{my} = 4000 \\ \mbox{z}_{0} = 10km, \Delta_{wp} = 10km & u_{0} = -11m/s & IES: & IES: \\ \mbox{branch} = -1, a_{0} = 0.1 & z_{a} = 25km & L_{z} = 30km, L_{z} = 10km & nz = 960, nx = 32 \\ & \Delta_{x} = 10km & dz \approx 31m, dx \approx 310m \end{array} $	CL	Cosine shape	non-Boussinesq	WKB Lagrange:	WKB Lagrange:	
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	Critical	$\lambda_x = 10 km, \ \lambda_z = 1 km$	T = 300K	$L_z = 30 km$	$nz=300, dz_{smooth}\approx 600m$	
	Layer	$k=2\pi/\lambda_{\rm x}, m=2\pi/\lambda_{\rm z}$	$N \approx 0.018$		$dz\approx 100, n_{my}=4000$	
		$z_0=10 km, \Delta_{wp}=10 km$	$u_0=-11m/s$	LES:	LES:	
$\Delta_{a} = 10 km$ $dz \approx 3 1m, dx \approx 3 10m$		$branch = -1, a_0 = 0.1$	$z_u = 25 km$	$L_z = 30km, L_x = 10km$	nz = 960, nx = 32	
			$\Delta_{\alpha} = 10 km$		$dz \approx 31m, dx \approx 310m$	

TRR181 workshop, Hamburg, 4 May 2017

Interactions of GWs and large-scale flows

æ