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Gravity Waves in the Atmosphere

= Gravity Wave Breaking and Drag
——¥ Gravity Wave Group Propagation (Ray) Path
Gravity Wave Amplitudes and Wave forms
2 Jet Stream Instabilities
%5 Convection/Thunderstorms
Ad Orography
@ Other Unspecified Sources of Gravity Waves

@ main sources: orography, convection,
jets/fronts

mesosphere

@ mainly vertical energy (momentum)
transport with ¢, = interaction with
the large scale flow ("drag")

altitude

@ wave breaking = turbulence,
dissipation, energy transfer to large
scale flow ("drag")
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(Kim et al., 2003)
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Motivation

Parametrization of atmospheric GWs

resolved scales { gravity waves )

small spatial scales

@ GWs are not fully resolved by GCMs and NWP models = parametrization
= (Wentzel-Kramers—Brillouin) WKB theory

@ Currently used parametrizations: steady state approximation
= instantenous propagation through constant resolved flow
= instantenous drag via wave breaking only!

@ Proposal for improvement: direct weakly-nonlinear coupling between the
GW and the resolved flow <==- transient propagation
<= continuous drag on the resolved flow during propagation
+ drag through wave breaking
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WKB theory

Wave resolving system (2-D Euler equations, no rotation):

Du i 987r 0
Dt TP T - D _ o 8 2
D Dt o Ox with 757 = 5 tug, twgs
— +cpfl—+g = 0 Exner pressure = (p/po)"
Dt 0z
D6 Pot. temperature 0 = T(po/p)* =T/~
- = 0
Dt k=R/cp
Dr " K ou n ow 0
— | —+ — =
Dt 1—k ox 0z

Simplification ingredients:

@ Decomposition of the fields: f = f, + fu

ha+ 22T

@ WKB assumption: fu(z,2,t) = ReF\(Z, T)ei[
with Z =€z, T = et, m = 0¢/0Z and w = —0¢ /0T

@ Scaling for the gravity waves: € = L,,/Hp << 1: weak
stratification
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WKB theory

WKB assumption in nature:

41 GOES-12 IMAGER - VISIBLE (CH ©1) - 19:48 UTC 15 MAR 2003 - CIMSS

(cimss.ssec.wisc.edu)
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WKB theory

@ At leading order O(¢?): dispersion-, and polarization relations = ray
equations

@ At next order O(e*): wave action conservation and the mean-flow
equations

@ The coupled system (Achatz et al., 2010):

Wave field Mean flow
dgz Nkm Ol up 19 5
- = F—————— =cg: = - = BR U, W :|
dt (k2 + m2)3/2 ot 502 {2 e w)
dgm k aNv  dw 10
= P ———— =1 = —=—(kcgz A
dt TR +m)2 dz = " 75, kea=lA)

RT,
dg A dcg.  (d, O a 7 = plz)=poe#/H H=21
— = - A - = Cgz g

dt oz dt ot 9

@ Problem: if rays crossing = caustics: several m at same height z = e.g.
cg> multivalued BUT! A = A(z,t) = wave action conservation ill-defined
= numerical problems
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WKB theory in phase space

@ Solution: extension of the model to a 2D phase space (z,m)

@ "Slicing up" the wave action density to several m intervals =
phase-space wave action density:

N(z,m,t) = /.Aa(z,t)d[m — ma(z,t)]da
R

@ Eulerian view

%/ g N)  d(mN)
ot * 0z + om =0

dcgz O _
@ ... and we have 2= 4 g1 =0
Hertzog et al., 2002, © Lagrangian view

Muraschko et al., 2015
ON (z,m,t) ON(z,m,t) . ON(z,m,t)
+ cgz +m =
ot 0z om

0
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WKB theory in phase space

@ Coupled wave - meanflow equations in phase space:

Wave field Mean flow
drz Nkm 6'U.b 1015
drz - _ _ Nem B 3 .
dt $(k32-‘y-77’b2)3/2 Co ot —%g [iRe(UwWw)}
drm k dy  dup 19
- e ('
dt $(k2+m2)1/2 dz dz m ﬁ@z( cgzA)
N dr 98 8 o 10 T
il T
=" &~ 72 "om = —— [k t)d
dt (dt 8t+cgz8 +m8m) 02 / cgz N (z,m,t)dm
—oo

@ phase space wave action density A conserved along ray trajectories

@ multiple m values allowed at each location z — spectral
(non-monochromatic) treatment — no caustics problems

@ extension to Muraschko et al., 2015: isothermal background with an
atmosphere-like density profile, representation of turbulent wave breaking
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WKB theory in phase space

Ray positions in phase space
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WKB theory in phase space + wave breaking

@ saturation occurs if static instability sets in (Lindzen 1981), i.e.
00, /0z + df/dz < 0 or, after an additional multiplication by ¢/6

Ob.

N? <0
0z *
#(2.T)

¢ | with m = 9¢/0Z this

1{k7‘+

@ with the ansatz b, (z, z,t) = ReByw (2, T)e
amounts in
|m||Buw| > N?

@ monochromatic = spectral

T ,d|Bu|? oN? [

/ m2Mdm = — / m2oNdm > o®N*
dm p

—o0

where « is a parameter accounting for the uncertainty of the criterion

@ If saturation = wave action density A is reset to a value that sets back
stability (height,- and scale-dependent eddy diffusivity coefficient).
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Numerical experiments

Methodology
@ LES: fully non-linear wave resolving reference (PincFloit, Rieper et al., 2013)
@ WKB-eu: Eulerian WKB model
@ WKB-la: Lagrangian WKB model
@ WKB-st: steady-state WKB model

Idealized cases (ssisni et a., 2016)
hydorostatic and nonhydrostatic wavepackets: 1<§\\7z < 30
z
static instability: |m|B,, > N2
modulational instability: |m| = |k| = wave packet is shrinking, its amplitude growing

critical layer: Ujey &~ —cp = m grows to infinity, wavepacket collapses

refraction by a jet: Uj.; weak = m only slightly modified

reflection from a jet: Ujey > % (1 - ) = m and cg. changes sign

k
Vk24m?2

Main question: relative importance of direct wave-meanflow interaction and
wave breaking
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Numerical experiments

Induced wind, refraction by a jet (A, = 10km, A\, = 1km)

(a) x102)  (b) (x102)
1
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’; Rieper et al., 2013
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Numerical experiments

Wave energy, reflection from a jet (A, = 10km, A\, = 1km) Bsloni et al., 2016
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Numerical experiments

Static instability (A = A, = 1km) BGI5ni et al., 2016
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Numerical experiments

Static instability (Az = A. = 1km)

Integrated energy
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Béloni et al., 2016
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WKB vs. WKB-steady-state

Wave field Mean flow

WKB theory: transient coupled system

% B Nkm — ol up 10

at :F(k2+m2)3/2 = oz 0 - —5$(kcgz A)
dgm k dN dfup )
—_ = F———— — =m

dt (k2 +m2)1/2 dz dz

dg A dc
= _op ez
dt 0z

The steady state approximation

dgz - T Nkm ¢ O up 10

-9 > = Cg2 = =

dt (k% +m2)3/2 at 702 (heg=lAD
dgm

ar = 0 = no wave-mean-flow interaction! = wave

breaking (constraining A(z)) is necessary to get
an induced wind!

dg A
dt
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WKB vs. WKB-steady-state

Static instability (A = A, = 1km) BGI5ni et al., 2016
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Conclusions

Based on the idealized numerical simulations presented here...

@ The direct weakly-nonlinear coupling between the GW and the meanflow
is an important mechanism of wave-meanflow interactions.

@ Wave breaking is also important but has a second order role in
describing the interaction betwen the GW and the meanflow.

@ The weakness of building GW parametrizations only on wave breaking has
been demonstrated.

@ The Lagrangian WKB model is very efficient: factor of 10-100 compared
to a corresponding Eulerian model and factor of 1000-10000 compared to
LES

@ There is a good reason to try out coupled transient WKB approaches in
gravity wave parametrizations
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D Domain size Resalution

REFR Cosine shape non-Boussinesq | WKB Euler: WKE Euler.
Refraction | A= 10km A = lkm | T = 300K L. = 40km nz = 400, nm =70
by ajet k=2afAom=2x/k, | N=0018 me [0.001.0.008] == 100 dm = 1075~
0= 10km, Auy = 10km | o= Sm/s WKE Lagrange WKE Lagrange
branch=—1.ag=0.1 | z, = 25km L = 40k 1z = 400, ez
Ay = 1 == 10001, riray = 4000
LES: LES:
L= 40km, L, = 10bm | nz= 1280,nx= 32
3m.dx = 310m
REFL Cosine shape non-Boussinesq | WKB Euler: WKB Euler.

Reflection Ay = 10km, A, = Lkm T = 300K

= 40km nz = 400, nm = 180

from a jet b= 27 Aeom = 2m /A N =0018 e [—0.01.0.008] Ot i = 107457

2= 10km.

= 10km | o= 40m/s WKB Lagrnge WKE Lagrange

branch=—1.ag = 0.1

= 40k nz = 400, dz,

Ay = 10km
LES: LES:
L. = 40km, L, = 10kn
PREFL Cosine shape non-Boussinesq | WKE Lagrange
Partial Ao = 6k, A = 3km T = 300K L= 50km
Reflection | k=2a/A.m=2a/A. | N=001%
fromajet | 2= 10km Ay, = 10km | ug=9.75m/s | LES LES:
branch=—1.a0= 0.1 = 25k L= 50k, L, = Gk

A, = 10k

i, dx = 18Tm
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Gaussian shape

non-Boussinesq

WKB Lagrange.

WKB Lagrange.

Ay = 300, A = 3k T = 300K 1. = 8Okm 1 = 266, d gy 7= 1800
Instability k=2afhom=2a/2 | N=008 300, i, = 4320
Hydrostatic 0= 10km, Ay, = 2kn LES LES
Wavepacket branch = ~1.ay =0.5 L. = 80k, L, = 30km 85400 =32

9, cx = 940m

STINH Gaussian shape non-Boussinesq | WKB Lagrange WKB Lagrange
Static A, =tk A, = Mk 7= 300K L, = 30km 1z = 300, 2 = 600
Instability k=2 Aem=2a/A | N=0018 100m, 1,y = 4000
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Wavepacket
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Modulational

Instability

Cosine shape
A= Ui, A = an
k=2afhm=21/2,

20 = 10km. A, = 20km

branch = ~1.ap =0.1

non-Boussinesq
7= 300K

N= 0018

WKB Lagrange

L. = 6lkm

LES;

L. = 6km, L, = lkm

WKB Lagrange
12 = 600, 2yt = 60U

1001, 11,4, = 4000

LES;

1920, 1 =

3m.ddx =3 10m

CL
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