Excitation of Internal Gravity Waves through mixed layer turbulence

L. Czeschel and C. Eden CEN - Universität Hamburg

Marmorino et al. 2009

Mechanisms: inertial pumping

1. divergent Inertial Oscillation, caused by horizontally divergent forcing, e.g. in a wake of a storm.

~ 5% to 30% of the near inertial energy surface flux penetrates below the mixed layer [Furuichi et al.(2008), Zhai et al.(2009), Rimac et al.(2016), Jurgenowski et al.(2017)]

Mechanisms: mechanical oscillator

2. overshooting of a descending plume which penetrate into the stratified interior

LES simulation of free convection. T' at the base of the mixed layer

Turner (1986)

Mechanisms: obstacle effect

 turbulent eddies cause bumps at the base of the mixed layer. Velocity shear at the base will then disturb underlying stratified ocean.

Bell (1978), Polton et al.(2008) Gayen et al., (2010) for BBL

coherent structures (obstacles) in the mixed layer

Moum and Smyth, 2008

LES model

- Mitgem, (prognostic subgrid-TKE, diagnostic λ)
- $180 \times 520 \times 120$ grid points
- dx = dy = 1m, dz = 0.25m to 0.5m
- $N^2 = 1.2e^{-4}\frac{1}{s^2}$ below a mixed layer depth $D(t_0 = 0) = -30m$
- $\bullet \ constant \ f$, inertial period = 1d

Forcing

- const zonal windstress $\tau_x = 0.08 \frac{N}{m^2}$
- const heat loss $W = 100 \frac{W}{m^2}$
- Monin-Obukhov lengthscale $L_{MO} = -36.5m$
- homog. Langmuir -/ Craik-Leibovich forcing

Experiment	Cooling	Windstress	Langmuir
C+W	Х	Х	
С	X		
W		Х	
W+L		Х	Х
C+W+L	Х	Х	Х

'free' convection

w at z/D = 0.5

Combined effect of wind stress and cooling

w at z/D = 0.5

zonally averaged w and temperature contours

Mean mixed layer velocities

Zonally averaged pressure anomalies

at t = π

at t = $\pi/2$

$$\omega \approx U_{mxl} \cdot k_h$$

$$\omega^2 = N^2 \cos^2 \phi + f^2 \sin^2 \phi$$

$$\phi(\pi) = 76.3^\circ, \ \phi(\pi/2) = 84.3^\circ$$

$$0.002 = \frac{f}{k_h} < U_{mxl} < \frac{N}{k_h} = 0.3$$

What sets eddy size / hor. wavelength of IW ?

assumption:
$$k_h D = \pi$$

 $\lambda_h = 2D$

Exp	D (t=0)	number of roll vortices	hor. wavelength (m)	2D (m)
C+W	15.0	12	85	30
C+W	30.0	6/8	170/127	60
C+W	60.0	4/6	256/170	120
Couette (no f)	30.0	16	64	60

What sets eddy size / hor. wavelength of IW ?

new scaling: $\lambda_h = 2D + T^* \int\limits_{z=-D}^0 rac{\partial v}{\partial z} \, dz$

$$T^* = \frac{D}{u^*} \operatorname{or} \frac{D}{w^*}$$
$$u^* = \sqrt{\tau/\rho_0}$$
$$w^* = (D \overline{w'b'}_{z=0})^{\frac{1}{2}}$$

Exp	D (t=0)	number of roll vortices	hor. wavelength (m)	new scaling (m)
C+W	15.0	12	85	60 - 75
C+W	30.0	6/8	170/127	120 - 150
C+W	60.0	4/6	256/170	240 - 300
Couette (no f)	30.0	16	64	60

Internal wave energy flux

z = -55m

Internal wave energy flux

Two distinct wavelength regimes

Amplitude ratio from polarisation equations:

$$egin{array}{rcl} \mathcal{A}_w &=& -i\omega\,\mathcal{A}_\zeta \ \mathcal{A}_p &=& i
ho_0\omega^2k_xk_z^{-2}\,\mathcal{A}_\zeta \ rac{\mathcal{A}_p}{\mathcal{A}_w} &=& -
ho_0Nk_x^{-1}\sin(\phi) \end{array}$$

$$\max(\overline{\boldsymbol{u'w'}}) at \phi = 45^{\circ}$$
$$\max(cg_z) at \phi = 35^{\circ}$$

Effect of transition layer:

Effect of transition layer: power spectra

Impact of Langmuir circulation

Craik - Leibovich forcing

Polton & Belcher, 2007

Impact of Stokes forcing

exp W+L

exp C+W+L

Internal wave energy flux

power spectra

C+W+L (day 1) W+L (day 1) C+W+L (day 3) W+L (day 3)

Damping of Inertial Oscillation

$$\tau \approx \frac{\int_{ML} \frac{1}{2} \bar{\boldsymbol{u}}_{IO}^2 dz}{\overline{w'p'}}$$
$$\bar{\boldsymbol{u}}_{IO} = \bar{\boldsymbol{u}} - \int_{\tau_{IO}} \bar{\boldsymbol{u}} dt$$

Exp	au (day 1)	τ (day 3)
C+W	3.9	5.6
W	8.6	49.0
W+L	7.6	21.1
C+W+L	6.5	11

Observations: τ = 20 days after storm (D'Asaro et al., 95)

 τ = 5 to 20 inertial periods at OWS Bravo (Altford et al., 2012)

Damping of Inertial Energy

exp w

Discussion

- inertial oscillations are able to excite large parts of IW spectrum through the 'obstacle mechanism'
- transition layer is a low pass filter
- in exp. C+W obstacle effect is most efficient

 'obstacle mechanism' is able to explain observed damping timescales of inertial oscillation

Marmorino et al. 2009

Internal wave energy flux

Internal wave energy flux

