Entropy production due to subgrid-scale thermal fluxes with application to breaking gravity waves

Almut Gassmann
IAP Kühlungsborn
dissipation in nature \leftrightarrow dissipation in modeling

\[
\text{dissipation} = \text{temperature} \times \text{internal entropy production}
\]

resolved scales = reversible energy transformations, forth and back

unresolved scales = resolved kinetic or internal energy are irreversibly converted into internal energy (=dissipation)
work and heat

\[dU = \delta A + \delta Q \]

macroscopically visible

\[dU = -pdV + TdS \]

macroscopically invisible

nature, DNS:
\[\rho \frac{d}{dt} c_v T = -p \nabla \cdot v + \nabla \cdot W + \varepsilon_{vfr} \]

model, RANS:
\[\rho \frac{d}{dt} c_v T = -p \nabla \cdot v + \nabla \cdot W + \varepsilon_{vfr} \]

\[\tilde{\rho} \frac{d}{dt} \hat{c}_v \hat{T} = -\tilde{p} \nabla \cdot \hat{v} - \nabla \cdot (\overline{c_v \rho v''T''}) - (p \nabla \cdot v - \tilde{p} \nabla \cdot \hat{v}) + \varepsilon_{tfr} \]

A. Gassmann: Entropy production by subgrid θ-fluxes and gravity wave breaking
Consequences of turbulence averaging

\[
\frac{\partial}{\partial t} \bar{\rho} c_v \hat{T} = -\nabla \cdot \left(c_v \bar{\rho} \hat{v} \hat{T} \right) - \bar{p} \nabla \cdot \hat{v} - \nabla \cdot \left(c_v \rho \hat{v}'' T'' \right) - (\bar{p} \nabla \cdot \hat{v} - \bar{p} \nabla \cdot \hat{v}) + \epsilon_{tfr}
\]

\[
\frac{\partial}{\partial t} \bar{\rho} c_v \hat{T} = -c_p \Pi \nabla \cdot (\bar{\rho} \hat{\theta}) - \nabla \cdot \left(c_v \rho \hat{v}'' T'' \right) + \nabla \cdot \left(c_v \rho \hat{v}'' T'' \right) - c_p \Pi \nabla \cdot (\bar{\rho} \hat{\theta}') + \epsilon_{tfr}
\]

Sole approximation: \(\Pi' / \Pi \ll 1 \)
This approximation is common.

\[
\Pi = \left(\frac{p}{p_0} \right)^{R/c_p} \quad T = \Pi \theta
\]
\[\frac{\partial}{\partial t} \bar{\rho} c_v \hat{T} = -c_p \bar{\rho} \nabla \cdot (\bar{\rho} \mathbf{v} \hat{\theta}) - c_p \bar{\rho} \nabla \cdot (\bar{\rho} \mathbf{v}'') + \varepsilon_{tfr} + \rho \hat{T} \frac{d}{dt} \hat{s} \]

Second law of thermodynamics

\[\bar{\rho} \frac{d}{dt} \hat{s} = -\nabla \cdot \left(\frac{c_p \rho \mathbf{v}''}{\hat{\theta}} \right) - \frac{c_p \rho \mathbf{v}''}{\hat{\theta}^2} \cdot \nabla \hat{\theta} + \varepsilon_{tfr} / \hat{T} \]

Export / import internal entropy production has to be positive for every single process

Gradient approach:

\[\rho \mathbf{v}'' = -\rho K^\theta \cdot \nabla \hat{\theta} \]

\[\sigma_\theta = \frac{c_p \bar{\rho}}{\hat{\theta}^2} K^\theta_{ii} (\partial_i \hat{\theta})^2 \geq 0 \]

Always positive, regardless of stratification

Dissipation by \(\theta \)-diffusion:

\[\varepsilon_\theta = \hat{T} \sigma_\theta \]
Energy exchange with kinetic energy has not been inspected thoroughly enough!

Consider only vertical fluxes

\[c_p \bar{\rho} w'' \theta'' \partial_z \Pi = -c_p \bar{\rho} K^\theta \partial_z \left(-\frac{g}{c_p \theta} \right) = \bar{\rho} K^\theta N^2 \]

\[\bar{\rho} K^\theta N^2 > 0 \]

- gain of internal energy
- entropy production **meaningful**
- loss of resolved kinetic energy
- a force must represent this kinetic energy
- loss in the momentum equation

\[\bar{\rho} K^\theta N^2 < 0 \]

- loss of internal energy
- entropy production **meaningless**!
- making it meaningful must prevent the gain of resolved kinetic energy
- instead, TKE is generated, but TKE is indistinguishable from internal energy
- the traditional approach (grey box) is safe

Case distinction necessary!
Case distinction: \(N^2 < 0 \)

- omit resolved energy conversion, only applicable to \(N^2 < 0 \)

\[
\frac{\partial}{\partial t} \bar{\rho} c_v \hat{T} = -c_p \bar{\Pi} \nabla \cdot (\bar{\rho} \hat{\nu} \hat{\theta}) - \nabla \cdot \left(c_p \bar{\Pi} \rho v'' \theta'' \right) + \varepsilon_{tfr} \\
\bar{\rho} \frac{\hat{d}}{dt} \hat{s} = -\nabla \cdot \left(\frac{c_p \rho v'' \theta''}{\hat{T}^2} \right) - \frac{c_p \bar{\Pi} \rho v'' \theta''}{\hat{T}^2} \cdot \nabla \hat{T} + \varepsilon_{tfr}/\hat{T}
\]

Gradient approach:

\[
c_p \bar{\Pi} \rho v'' \theta'' = -c_p \bar{\rho} \hat{K}^T \cdot \nabla \hat{T}
\]

\[
\sigma_T = \frac{c_p \bar{\rho}}{\hat{T}^2} \hat{K}^T_{ii} (\partial_i \hat{T})^2 \geq 0
\]

Contradiction to 2nd law, if applied in case of \(N^2 > 0 \)

Formally, this is a temperature diffusion = subscale heat flux.

For unstable stratification \(\partial_z \hat{\theta} \) and \(\partial_z \hat{T} \) are parallel.

Dissipation by T-diffusion: \(\varepsilon_T = \hat{T} \sigma_T \)
Case distinction: $N^2 > 0$

\[
\frac{\partial}{\partial t} \bar{\rho} c_v \hat{T} = -c_p \bar{\Pi} \nabla \cdot (\bar{\rho} \hat{V} \hat{\theta}) - c_p \bar{\Pi} \nabla \cdot (\bar{\rho} v'' \theta'') + \varepsilon_{tfr}
\]

\[
\frac{\partial}{\partial t} \bar{\rho} \left(\frac{\hat{V}^2}{2} + \Phi \right) = -c_p \bar{\rho} \hat{V} \hat{\theta} \cdot \nabla \bar{\Pi} - c_p \bar{\rho} v'' \theta'' \cdot \nabla \bar{\Pi} - \hat{V} \cdot \nabla \bar{\rho} v'' \theta'' - \nabla \left(\bar{\rho} \nabla \left(\frac{\hat{V}^2}{2} + \Phi \right) \right)
\]

Which momentum equation belongs to kinetic energy equation?

Consider only vertical direction.

\[
\frac{\partial}{\partial t} \hat{w} = -g - c_p \hat{\theta} \partial_z \bar{\Pi} - c_p \frac{\rho w'' \theta''}{\bar{\rho} \hat{w}} \partial_z \bar{\Pi}
\]

\[
\frac{\partial}{\partial t} \hat{w} = -g - c_p \hat{\theta} \partial_z \bar{\Pi} - \frac{K^\theta N^2}{\hat{w}}
\]

\[
\frac{\partial}{\partial t} \hat{w} = -g - c_p \hat{\theta} \partial_z \bar{\Pi} - R_w \hat{w}
\]

\[-c_p \hat{\theta} \partial_z \bar{\Pi} = -\frac{1}{\bar{\rho}} \partial_z \bar{\rho} \]

- **new term**
- turbulent pressure gradient term
- similarity to Rayleigh damping

\[R_w = N^2 K^\theta / \hat{w}^2\]

- diffusion coefficient must prevent singularity
- new term leads to downward turbulent θ-flux.
Case distinction: \(N^2 > 0 \)

\[
\frac{\partial}{\partial t} \hat{w} = -g - c_p \hat{\theta} \frac{\partial \Pi}{\partial z} - R_w \hat{w}
\]

\[
R_w = N^2 K^\theta / \hat{w}^2
\]

Hypothesis: For shortest resolvable scales, the horizontal wind is damped by vertical diffusion as fast as the vertical wind is damped by Rayleigh damping.

\[
R_w = K^m \frac{\pi^2}{(\Delta z)^2}
\]

\[
K^\theta = K^m \frac{\pi^2 \hat{w}^2}{(\Delta z)^2 N^2}
\]

There is no diffusion for \(\hat{w}^2 = 0 \).

Consider isentropes of a breaking gravity wave

New procedure

- wave overturns
- amplitude does not grow

State of the art

- wave overturns less
- amplitude grows

A. Gassmann: Entropy production by subgrid \(\theta \)-fluxes and gravity wave breaking
Examplary 2-d modeling with ICON-IAP

ICON-IAP model with hexagonal mesh (QJRMS, 2013)

\[\Delta z = 250 \text{ m}, \Delta x = 2 \text{ km}, \Delta t = 3 \text{ s}, \]
\[H = 120 \text{ km}, L = 1200 \text{ km}, T = 32 \text{ h} \]

- \(K^m \) as in Holtslag und Boville (1993)
- initial profile as in Chun and Kim (2008)

- gravity wave generator as in Durran (1999), ceases after 16 hours

Figure 1. The basic-state (a) zonal wind and (b) temperature used for the numerical simulations. These are the July mean values at 35°N from the CIRA climate data.
- isentropes have local minimum at $w = 0$
- gravity wave breaks near the critical level: $m^2 \rightarrow \infty$
- isentropes overturn
- vertical wind shear is large
Downward directed θ fluxes

$$E_{\text{new}} = \rho K^m w^2 \pi^2 / (\Delta z)^2$$

$$E_{\text{old}} = \rho K^m N^2$$

State of the art

New procedure

wave overturns
amplitude does not grow

$$\hat{w}^2 = 0$$

$$t \quad t + \Delta t$$

Wave overturns less
amplitude grows

$$t \quad t + \Delta t$$

A. Gassmann: Entropy production by subgrid θ-fluxes and gravity wave breaking
3 setups

EXP 1: state of the art, inconsistent for $N^2 > 0$

After a long time....

EXP 2: entropically consistent for $N^2 > 0$

Further experiments (not shown):
If
• forcing in w-eq. is omitted, but θ-flux is retained in θ-eq,
• typical numerical off-centering in the implicit solver for w is used,
results are very similar to exp 2.

EXP 4: nothing for $N^2 > 0$
Relative static stability N^2/N^2_{iso}

EXP 1: state of the are, inconsistent for $N^2>0$

EXP 2: entropically consistent for $N^2>0$

EXP 4: nothing for $N^2>0$

\[N^2_{iso} = \frac{g^2}{(cpT)} \]

N^2 for isothermal stratification
A. Gassmann: Entropy production by subgrid θ-fluxes and gravity wave breaking

Temperature profiles

Experiments 1, 2, 4
- sharp maxima, peaks
- sometimes overadiabatic stratification
- no parabolic shape

Lidar-measurements (Liu and Meriwether, 2004)
Horizontal mean and variability of N^2/N_{iso}^2
Dissipations rates $\varepsilon_\theta, \varepsilon_T, \varepsilon_{tfr}$

Upper picture:
- $\partial_z \theta \partial_z T$ changes sign at isothermal stratification
- inversion layer ($\partial_z T > 0$) has positive dissipation, but the physical process is wrong
- there should not be any qualitative difference between less and more stable stratification than isothermal stratification, if the stratification is stable

↑ frictional dissipation is 10 times larger than thermal dissipation
← thermal dissipation

A. Gassmann: Entropy production by subgrid θ-fluxes and gravity wave breaking
Case distinction for subscale parameterization:

stable $N^2 > 0$ and **unstable** $N^2 < 0$

Energy conversion between resolved kinetic and internal energy is necessary for $N^2 > 0$.

This requires a new term in the vertical momentum equation.

The friction term converts likewise kinetic energy into internal energy.

But this process is described by tensor fluxes and not by vector fluxes.

New procedure

\[
\hat{\omega}^2 = 0
\]

wave overturns

amplitude does not grow

State of the art

\[
\hat{\omega}^2 = 0
\]

wave overturns less

amplitude grows