
Fluctuation Relation
in a

Shell Model
of

Turbulence
Collaborative Research Centre TRR 181

"Energy Transfers in Atmosphere and Ocean"

Denny Gohlke & Richard Blender

(Sub-Project M4)

Meteorological Institute

Theoretical Meteorology

Idea and Purpose of M4 — Entropy Production in Turbulence Parameterisations

The physically consistent representation of turbulence subgrid-scale processes in forced dissipative systems like atmosphere and ocean requires the handling of statistical nonequilibri-

um fluctuations. The statistics of these fluctuations — as a fingerprint of the chaotic dynamics — provide useful insights into the dynamical response behaviour of a system (transport

coefficients) and can be described by the Fluctuation Theorem. The idea of M4 is the incorporation of this theorem to modify existing parameterisation schemes, focusing on a stochastic

and counter-gradient parameterisation of momentum and heat fluxes which are related to energy dissipation and backscatter.
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Fluctuation Theorem

•Result from statistical physics of time-reversible dynamical systems

•Different versions with constraint on probability distributions of fluctuations of non-

equilibrium quantities (dissipation function, contraction rate, entropy production)

•Connection of microscopic reversibility and macroscopic irreversibility

(generalisation of the 2nd law of thermodynamics)

Condition for Macroscopic Reversibility:

[Sevick EM, Prabhakar R, Williams SR, Searles DJ. 2008.

Annu. Rev. Phys. Chem. 2008. 59:603–33] *

probability forward = probability backward

f (Γ0, 0) δΓ0 = f (Γ∗t , 0) δΓ∗t

y

ln(
f (Γ0, 0) δΓ0
f (Γ∗t , 0) δΓ∗t

)

= 0 reversibility

6= 0 irreversibility

⇓

Definition of an entropy-like quantity in

nonequilibrium as a measure for

macroscopic irreversibility

⇓

Dissipation Function Ω(Γt):

(generalised entropy production)

Ωt =
1
t

∫ t

0
Ω(Γs)ds :=

1
t
ln(

f (Γ0, 0) δΓ0
f (Γ∗t , 0) δΓ∗t

)︸ ︷︷ ︸
= 1

t ln( f (Γ0, 0)/f (Γ∗t , 0))−Λt

Properties:

• Extensive phase variable (∝ system size)

•Odd under time-reversal

Bundle of trajectories (upper set) in phase

space of a deterministic dissipative time-

reversible system, Γ̇ = F(Γ), starting with-

in the volume δΓ0 at point Γ0 = (q0, p0) with

negative contraction rate Λ = ∇ · Γ̇.

The probability for observing the system at

a certain point Γt within the volume δΓt at

time t is given by f (Γt, t) δΓt. The distribu-

tion function f (Γt, t) is determined by the

Liouville equation ∂t f +∇ · ( f Γ̇) = 0.

The Fluctuation Theorem interrelates

these probabilities with those for observing

the system in a set containing the corres-

ponding time-reversed trajectories (lower

bundle with Γ∗t = (qt,−pt)). [Ref. *, Fig. 1]

First case: dynamical system arbitrarily far from equilibrium
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Transient Fluctuation Theorem (TFT)

[Evans DJ, Searles DJ. 2002. Adv. Phys. 51:1529–85]

p(Ωt = A)/p(Ωt =−A) = exp(A t)

with〈
Ωt
〉
≥ 0

• Equilibrium:
〈
Ωt
〉
= 0

•Close to equilibrium: Ωt related to entropy production σ (∝ flux · force)

•Based on statistics of initial ensemble (bundle of trajectories)

Second case: dynamical system in steady state

⇓ ⇓

Asymptotic version of TFT Chaotic Hypothesis + Large Deviation

(p(X) ∼ et I(X) (t→ ∞), I(X)− I(−X) = X)
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Evans-Searles Steady-State

Fluctuation Theorem

[Evans DJ, Searles DJ. 2002. Adv. Phys. 51:1529–85]

Transient state relaxation time−→
tR

Steady state

lim
t/tR→∞

1
t
ln(

p(Ωt, ss = A)

p(Ωt, ss = −A)
) = A
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Gallavotti-Cohen Fluctuation Theorem

[Gallavotti G, Cohen EGD. 1995. J. Stat. Phys. 80:931–70]

lim
t→∞

1
t
ln(

p(Λt = A)

p(Λt = −A)
) = A (1)

• Thermostated systems: Λt related to

entropy production

•Based on statistics of single trajectory
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Shell Model of Turbulence

Atmosphere and ocean dynamics: non-time-reversible Navier Stokes equations

Studies of energy transfer mechanism in Fourier space

d
dt

û(k, t) = N(k′, k′′, t)︸ ︷︷ ︸
triads interaction

+ f̂(k, t)︸ ︷︷ ︸
f orce term

− ν k2û(k, t)︸ ︷︷ ︸
viscous term

Modeling of the nonlinear term:

•No geometry

• Truncation of spectral modes

•Reduction to N shells of wavenumbers

•Nearest-neighbour-interaction

⇓
Shells represented by complex velocities {un(t)}
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GOY Shell Model (Gledzer 1973, Ohkitani & Yamada 1987)

[Aumaitre S, Fauve S, McNamara S, Poggi P. 2001. Eur. Phys. J. B 19: 449-60]

d
dt

un = ikn (u∗n+1 u∗n+2−
α

2
u∗n−1 u∗n+1−

1− α

4
u∗n−1 u∗n−2)︸ ︷︷ ︸

energy conserving

+ f δn,4︸ ︷︷ ︸
large scales

− ν k2
n un︸ ︷︷ ︸

small scales

(n = 1, ..., N)

⇓
Commonly used values for investigation of 3D turbulence:

α = 1
2, kn = 2n k0, k0 = 2−4, f = (5 + 5i) 10−3

⇓
Energy balance equation: Ė(t) = P(t)− D(t)
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After passing the

transient regime

the system is in a

statistically steady

state with 〈P〉 = 〈D〉.
The contraction rate

Λ = −ν ∑N
n=1 k2

n is

a non-fluctuating

quantity. The validity

of eq. (1) was tes-

ted for the injected

Power with close-to-

Gaussian distribution

and a correlation time

tc ≈ 15.
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mean(E)=7.378e-02 with std(E)/mean(E)=0.3423

0 2 4 6 8 10

Time t #10 5

-3

-2

-1

0

1

2

3

4

In
je

ct
ed

 P
ow

er
 P

#10 -3

mean(P)=1.352e-03 with std(P)/mean(P)=0.417

0 2 4 6 8 10

Time t #10 5

0

0.2

0.4

0.6

0.8

1

1.2

D
is

si
pa

te
d 

P
ow

er
 D

mean(D)=1.351e-03 with std(D)/mean(D)=4.021

⇓
Statistics of time-averages Pt>tc
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Fluctuation Relation for t-averaged Incected Power
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Results:

• Fluctuation relation (varying slope ten-

ding to a limit) shown in a shell model for

statistics of averaged injected power Pt

(tested range: −10−3 ≤ Pt ≥ 10−3, t . 70)

•Distribution of normalised power Yt =
Pt
P∞

described by p(Yt) ∝ e−β(t) I(Y) with scal-

ing function I(Y) and β = A t + B, leading

to non-asymptotic relation:

ln(
p(Yt)

p(−Yt)
) = (A t + B)Yt
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