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The physically consistent representation of turbulence subgrid-scale processes in forced dissipative systems like atmosphere and ocean requires the handling of statistical nonequilibri-
um fluctuations. The statistics of these fluctuations — as a fingerprint of the chaotic dynamics — provide useful insights into the dynamical response behaviour of a system (transport
coefficients) and can be described by the Fluctuation Theorem. The idea of M4 is the incorporation of this theorem to modify existing parameterisation schemes, focusing on a stochastic
and counter-gradient parameterisation of momentum and heat fluxes which are related to energy dissipation and backscatter.

e Result from statistical physics of time-reversible dynamical systems

e Different versions with constraint on probability distributions of fluctuations of non-
equilibrium quantities (dissipation function, contraction rate, entropy production)

e Connection of microscopic reversibility and macroscopic irreversibility
(generalisation of the 2nd law of thermodynamics)

Condition for Macroscopic Reversibility: , o,
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probability forward = probability backward R
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Definition of an entropy-like quantity in
nonequilibrium as a measure for
macroscopic irreversibility
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Bundle of trajectories (upper set) in phase
space of a deterministic dissipative time-
Y reversible system, I' = F(I'), starting with-
in the volume 6Ty at point Ty = (qy, pg) With
negative contraction rate A =V - T.

The probability for observing the system at
a certain point I'; within the volume oIy at
time t is given by f(Iy, t)éTs. The distribu-
tion function f(I'y, t) is determined by the
Liouville equation o; f +V - (fT') = 0.

The Fluctuation Theorem interrelates
these probabilities with those for observing
the system in a set containing the corres-
ponding time-reversed trajectories (lower
bundle with T'; = (q;, —p;)). [Ref. *, Fig. 1]

Dissipation Function Q(T%):
(generalised entropy production)
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Properties:

e Extensive phase variable («x system size)

e Odd under time-reversal

First case: dynamical system arbitrarily far from equilibrium

C Transient Fluctuation Theorem (TFT) A
[Evans DJ, Searles DJ. 2002. Adv. Phys. 51:1529-85]
py=A)/p(Qu=—A) = exp(At)
with
Q) = 0
e Equilibrium: (Q;) =0
e Close to equilibrium: Q; related to entropy production ¢ (« flux - force)
& Based on statistics of initial ensemble (bundle of trajectories) y
Second case: dynamical system in steady state
Y Y
Asymptotic version of TFT Chaotic Hypothesis + Large Deviation
(p(X) ~ e 1K) (t = o), I(X) — I(=X) = X)
4 Evans-Searles Steady-State e Gallavotti-Cohen Fluctuation Theorem R

Fluctuation Theorem

[Gallavotti G, Cohen EGD. 1995. J. Stat. Phys. 80:931-70]

[Evans DJ, Searles DJ. 2002. Adv. Phys. 51:1529-85]
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e Thermostated systems: A; related to
entropy production

. Based on statistics of single trajector;p

Atmosphere and ocean dynamics: non-time-reversible Navier Stokes equations
Studies of energy transfer mechanism in Fourier space
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Modeling of the nonlinear term:

e No geometry e Reduction to N shells of wavenumbers

e Truncation of spectral modes e Nearest-neighbour-interaction

U
Shells represented by complex velocities {u;(t)}
4 GOY Shell Model (Gledzer 1973, Ohkitani & Yamada 1987) >
[Aumaitre S, Fauve S, McNamara S, Poggi P. 2001. Eur. Phys. J. B 19: 449-60]
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Commonly used values for investigation of 3D turbulence:
0 =3, kn=2"ky ko=2"% f=(5+5i)1073
U
Energy balance equation: E(t) = P(t) — D(¢)
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After  passing  the GOY Shell Model [N=22,Nu=1e-07]
tranSIent reglme | ‘ mean(E)=7.378e-02 with std(E)/mean(E)=0.3423
the system is in a .
statistically  steady 2"
state with (P) = (D).
The contraction rate
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o4 Probability Distribution of t-averaged Injected Power e Fluctuation Relation for t-averaged Incected Power
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statistics of averaged injected power P;

(tested range: 1072 < P; > 1075, ¢t $70) e
e Distribution of normalised power Y; = % é

described by p(Y;) « e P IY) with scal- =
ing function I(Y) and B = At + B, leading | cz;
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to non-asymptotic relation:
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