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IGW emission from jets and fronts

IGW from jets and fronts contribute significantly to overall IGW spectrum
(Plougonven and Zhang, 2014)

Physical understanding still insufficient to replace/improve existing, highly
tuned parameterization schemes

Increasing desire to also incorporate climate sensitivity

IGW signal embedded in various atmospheric processes ⇒ Extraction
difficult

Idealized dynamical systems facilitate investigations:

Baroclinically Unstable Flows (O’Sullivan and Dunkerton, 1995; Plougonven and Snyder, 2005)

Vortex dipole studies (Snyder et al., 2007; Wang et al., 2009)

More freely generated jet-front system: differentially heated rotating
annulus experiment

Possibility of comparison with corresponding laboratory studies
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Differentially heated rotating annulus experiment

Simple laboratory experiment to reproduce dynamics of mid-latitudes

Parameter setting

a = 20 cm, b = 70 cm, d = 4 cm

Ta = 15◦C, Tb = 45◦C

Ω = 0.08 rad/s

⇒ Atmosphere-like conditions

< N >

f
> 1

Baroclinic waves (Borchert et al., 2015)
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Direct numerical simulations: large-scale flow

Clear baroclinic wave strucure including a jet-front system

a) pressure, b) vertical vorticity, c) ||u|| and d) temperature
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Direct numerical simulations: IGW activity

Reduced horizontal velocity divergence δ used as IGW indicator

δ = δtotal︸︷︷︸
∇h·uh

−δbal,

where

δbal = −∂wbal

∂z
.

wbal is diagnosed from the quasi-geostrophic omega equation (Hoskins et al.

(1978), Danioux et al. (2012))

∇2
qgwbal = − 2

N2
∇h ·Q,

where
Q =∇hug · ∇hBg .

only depends on quasi-geostrophic fields.
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Balanced and unbalanced flow and their interaction

Diagnosing balanced part in horizontal divergence: omega equation

δtotal δbal δunbal
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Direct numerical simulations: IGW activity

Four distinct wave packets (WP1 – WP4) can be identified
(Hien et al., submitted)

Annulus geometry Cartesian projection
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Direct numerical simulations: IGW activity

Wave packet analysis (k , A,..) using UWaDi (Unified Wave Diagnostics)
based on Hilbert-transform algorithm
Reference for related laboratory studies

WP4

WP1

WP3

WP2 WP2

WP4

WP1

WP3

Amplitudes [1/s] wave numbers [1/cm]
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Balanced and unbalanced flow and their interaction

Decomposition of flow into geostrophic and ageostrophic part

v = ug + va

B = Bg + Ba

p = pg + pa

f ez × ug +∇hpg = 0

Bg −
∂pg
∂z

= 0

Πg = ζ +
f

N2

∂B

∂z
=

1

f

(
∇2

h +
f 2

N2

∂2

∂z2

)
pg

ζa +
f

N2

∂Ba

∂z
= 0

... ⇒ Geostrophic forcing of ageostrophic flow

Dδa
Dt

= −∂Ba

∂z
+
∂2paa
∂z2

+
∂v

∂z
· ∇wa −

∂2

∂z2
∇−2 (∇ug · ·∇ug )
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Source mechanism of IGWs

Tangent linear model for the ageostrophic flow: Principle

Decomposition into balanced (large) and unbalanced (small) part

x = x̃ + x
′ with |x ′| � |x̃ | (Unbalanced part ≈ gravity waves)

Inserting this into the full equation system gives

∂x

∂t
=
∂x̃

∂t
+
∂x ′

∂t
= N(x) ,

where N(x) is the nonlinear tendency of the full flow.

Taylor approximation leads to

N(x̃ + x
′) = N(x̃) + L(x̃)x ′ +O(|x ′|2)

with the linear, partial-differential operator L(x̃)x ′
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Source mechanism of IGWs

Tangent linear model for the ageostrophic flow: Principle

Hence, the tangent linear evolution of x ′ is given by

∂x ′

∂t
= L(x̃)x ′ + N(x̃)− ∂x̃

∂t︸ ︷︷ ︸
F (x̃)

with a balanced forcing term F (x̃).

Implementation of window function to suppress instabilities and IGW
generation at side walls
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Source mechanism of IGW: Tangent linear analysis

Tangent linear annulus equation

Dua
Dt

= −f ez × ua −∇hp̃a −
(
Dug
Dt

)
a

−

{(
Dug
Dt

)
g

}
DBa

Dt
= −N2wa −

(
DBg

Dt

)
a

−

{(
DBg

Dt

)
g

}
Dwa

Dt
= Ba −

∂p̃a
∂z

a)
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Sources of IGW in the rotating annulus experiment

Initialisation of linear model with zero ageostrophic part at t = 0 s

WP1, WP2 and WP4 reproduced by linear model, WP3 is not present

At t=0 s, (only) balanced forcing induces ageostrophic flow (and IGWs)
⇒ WP1, WP2 and WP4 emitted by balanced part of the flow

WP3 is probably generated at inner side wall

(for details see Jacoby et al. (2011); Randriamampianina and Crespo del Arco (2015))
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Sources of IGW and role of balanced forcing

Initialisation of linear model with non-zero ageostrophic part

Three model configurations: Fully nonlinear, forced linear and
unforced linear (F = 0)

Initialisation with same (non-zero) ageostrophic field at t ≡ 0 s

x
′ = x − x̃

Wave packets already present at initial time t=0 s
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Sources of IGW and role of balanced forcing

Initialisation of linear model with non-zero ageostrophic part

Balanced forcing controls over structure around vortex dipole

Propagation of WP1 and WP3 captured by linear models ⇒ Forcing
controls over generation but only minor on propagation

WP2 differs significantly in unforced linear model ⇒ WP2 is
continuously affected by internal forcing

WP4 only hardly identifiable ⇒ effect of window function?

Steffen Hien (hien@iau.uni-frankfurt.de) IGWs in the rotating annulus 16 / 19



Sources of IGW and role of balanced forcing

Initialisation of linear model with non-zero ageostrophic part

Balanced forcing controls over structure around vortex dipole

Propagation of WP1 and WP3 captured by linear models ⇒ Forcing
controls over generation but only minor on propagation

WP2 differs significantly in unforced linear model ⇒ WP2 is
continuously affected by internal forcing

WP4 only hardly identifiable ⇒ effect of window function?

Steffen Hien (hien@iau.uni-frankfurt.de) IGWs in the rotating annulus 16 / 19



Sources of IGW and role of balanced forcing

Initialisation of linear model with non-zero ageostrophic part

Balanced forcing controls over structure around vortex dipole

Propagation of WP1 and WP3 captured by linear models ⇒ Forcing
controls over generation but only minor on propagation

WP2 differs significantly in unforced linear model ⇒ WP2 is
continuously affected by internal forcing

WP4 only hardly identifiable ⇒ effect of window function?

Steffen Hien (hien@iau.uni-frankfurt.de) IGWs in the rotating annulus 16 / 19



Sources of IGW and role of balanced forcing

Initialisation of linear model with non-zero ageostrophic part

Balanced forcing controls over structure around vortex dipole

Propagation of WP1 and WP3 captured by linear models ⇒ Forcing
controls over generation but only minor on propagation

WP2 differs significantly in unforced linear model ⇒ WP2 is
continuously affected by internal forcing

WP4 only hardly identifiable ⇒ effect of window function?

Steffen Hien (hien@iau.uni-frankfurt.de) IGWs in the rotating annulus 16 / 19



Sources of IGW and role of balanced forcing

Initialisation of linear model with non-zero ageostrophic part

Balanced forcing controls over structure around vortex dipole

Propagation of WP1 and WP3 captured by linear models ⇒ Forcing
controls over generation but only minor on propagation

WP2 differs significantly in unforced linear model ⇒ WP2 is
continuously affected by internal forcing

WP4 only hardly identifiable ⇒ effect of window function?

Steffen Hien (hien@iau.uni-frankfurt.de) IGWs in the rotating annulus 16 / 19



Sources of IGW and role of balanced forcing

Time evolution of 3D correlation coefficient between (un)forced linear
and nonlinear model

Only grid points not affected by window function are taken into account
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Conclusions

Conclusions

Numerical simulations of differentially heated rotating annulus experiment
show baroclinic wave structure exhibiting a realistic jet-front system.

IGWs occur in four distinct wave packets. Characterization with UWaDi.

Tangent linear analysis indicates that significant part of IGWs originate from

jet-front system: spontaneous emission of IGWs by internal flow (Zhang, 2004) .

Outlook

Investigation of IGW radiation by jets and fronts in ever more realistic flow
configurations

...

Physically based source parameterization of IGWs in large-scale background
flow
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