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Atmospheric motions in mid-high latitudes has been widely recognized to show variability on multiple time scales

such as the low-frequency variability (7-30 days) of mid-latitude westerly jet and blocking or North Atlantic

Oscillation (NAO) and the synoptic-scale (2-7days) variability of baroclinic eddies (Benedict et al. 2004; Franzke

et al. 2004). Essentially speaking, the blocking and NAO are eddy-stirred turbulent flows in the atmosphere. The

blocking and NAO events have been known to arise from the inverse energy transfer from small to large scales

(Berggern et al.1949; Shutts 1983). At present, the multi-scale interaction of blocking and NAO events has been an

important research topic.

In past years, the role of synoptic-scale eddies in the blocking and NAO flows were often considered as a time-

mean effect of synoptic-scale eddies on the blocking (Hoskins et al. 1983; Shutts 1983) and NAO (Hurrell 1995;

Vallis et al. 2004; Jin et al. 2006) using the multi-time frequency decomposition method. However, such a method

ignored the instantaneous modulation of synoptic-scale eddies by the varying blocking and NAO flows, and thus

cannot reflect the multi-scale interaction of the mean flow, NAO or blocking and synoptic-scale eddies. Luo and his

collaborators (2000, 2005; 2007, 2014, 2015) proposed and developed the multi-space scale interaction model to

describe how the multi-scale interaction leads to blocking and NAO flows. In this poster, we mainly describe the

basic idea of the multi-space scale interaction and present a crude comparison with the multi-time scale interaction

equations.
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Multi-scale  interaction equations of the inverse energy transfer in 
atmospheric flows

(1) The multi-time scale interaction equations cannot describe the multi-scale interaction of blocking and NAO flows

because there is a self-contradiction between the time-frequency decomposition and their interaction equations.

(2) The multi-space scale interaction equations can represent the multi-scale interaction of blocking and NAO flows. The

solution of the multi-space scale interaction equations can account for why the mean flow, large- and small-scale

components possess the same low-frequency timescale variability when the large-scale components are driven by small-

scale components.

Theoretical results

c). An analytical solution of multi-space scale interactions
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Under the conditions and , we can solve Eq. (3). Its analytical solution can be derived by using a multi-scale expansion method similar to

those in Luo (2000), Luo and Li (2000) when one assumes synoptic-scale eddies being of the form of , where is the preexisting synoptic-scale eddies

prior to the block or NAO onset and is the deformed eddies that result from the feedback of intensified large-scale flow on preexisting eddies.

Similar to Luo (2000, 2005), Luo and Li (2000) and Luo et al. (2007, 2015), the analytical solution to Eq. (3) can be obtained as
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Figure 3. Instantaneous (a) non-dimensional planetary-scale (CI=0.15),

(b) synoptic-scale (CI=0.3) and (c) total (CI=0.3) fields of a NAO-

event obtained from the UNMI model for , and

.
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Figure 4.  Same as Fig. 3 but for a NAO+ event.

(a) (b)

(c)

Figure 5. Time series of normalized non-dimensional kinetic energies of mean flow (red), NAO

anomaly (blue) and synoptic-scale eddies (green) averaged in the NAO region

for (a, b) NAO- and (c, d) NAO+ events with (a, c) and (b, d) . The other parameters are

chosen to be the same as in Figs. 1-2.
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Figure 1. An observed blocking flow as a typical example 

of the inverse energy transfer from a small to a large scale 

(Berggren et al. 1949). Figure 2. Observed unfiltered daily fields of NAO events for negative (a) and (b) positive phases.
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a). Multi-time scale interaction equations and their self-contradiction
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Where , , and is the horizontal wind vector. Note that and have been used in

the derivation of Eqs. (5a-b). The overbar denotes a time average during the range of a period from 0 to as well.

It is obvious that has a low-frequency timescale because its equation (2b) contains the variable . This contradicts the time frequency

decomposition method in the form of .

,             (2a)   

,                   (2b)

If one divides the atmospheric flow into a time-mean flow ( ) and high-frequency components (        ) in the form of , then 

substituting into Eq. (4) and making a time averaging yield
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To describe the contribution of high-frequency components to the low-frequency component, the often-used method is to consider the mean flow and low-

frequency component as a time-mean flow with a period of (Shutts 1983; Hoskins et al. 1983). Correspondingly, the high-frequent components are assumed

to have a period of as defined by a derivation from the time-mean flow.
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where is the relative vorticity of the streamfunction ,  ,       is the characteristic horizontal length,        is the radius of Rossby

deformation,  is the meridional gradient of the Coriolis parameter,  is the forcing term that may depend on the streamfunction field and   is the 

dissipation term.

For an atmospheric flow, the non-dimensional quasi-geostrophic barotropic potential vorticity (PV) equation can be written in the form of
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b). Multi-space scale interaction equations and the same low-frequency variability
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Eqs. (3a-b) are first derived by Luo (2000, 2005) and Luo and Li (2000) for quasi-geostrophic barotropic and two-layer fluid motions when the dissipation is 

neglected.

It is seen that the large- and small-scale components tend to possess the same low-frequency variability during their interaction because is a low-

frequency timescale in Eq. (3a). This avoids the time-averaging assumption used in the derivation of Eq. (2a). 

Split the streamfunction of atmospheric motions in Eq. (1) into three parts: mean flow , large-scale (low zonal wavenumber) and small-scale

(high zonal wavenumber) components, then we can obtain the following three equations from Eq. (1):
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conjugate of , , , , is the reference latitude, is the width of the non-dimensional beta plane channel,

and , the spatial distribution of the eddy amplitude for and , where is the

maximum amplitude at and other coefficients and notation can be found in Luo et al. (2007a-b; 2105).
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In Eq. (4), denotes the NAO anomaly and represents the streamfunction of the mean flow change due to the presence of the NAO, whereas

is the synoptic-scale eddy streamfunction being of the form of , where is the preexisting synoptic-scale eddies prior to the block or

NAO onset and is the deformed eddies that result from the feedback of intensified large-scale flow on preexisting eddies. When and

, it represents the solution of the blocking flow or NAO- event (Luo 2000, 2005; Luo et al. 2014). However, when and , it represents

the solution of a NAO+ event (Luo et al. 2007a-b; Luo et al. 2015). Thus, the model solution (4) may be referred to as a solution of the unified nonlinear

multi-scale interaction (UNMI) model because it can not only describe the life cycle of blocking or NAO- events, but also the life cycle of NAO+ or

intensified zonal jet events.
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We can obtain from Eq. (3a) in the absence of dissipation and external forcing because the observations show that

is approximately held during the NAO life cycle (Luo et al. 2007b). Prior to the NAO- onset, we have ( ,

) because the NAO- is so weak that there is because of . This means that the NAO- is driven by preexisting synoptic-

scale eddies rather than by deformed eddies . A similar mechanism works for the NAO+. Of course, the evolution of the NAO is also affected

by deformed eddies because of ( , ), once it is stronger. The role of deformed

eddies in the NAO evolution has been examined in Luo et al. (2015). Thus, here we do not focus on further examining this problem. Instead, we will use

the model solution to confirm that the mean flow, NAO anomaly and synoptic-scale eddies will exhibit the same low-frequency variation once their

interaction takes place.
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2.  Multi-time and -space scale interaction models under a quasi-geostrophic 
barotropic approximation

Observational results


