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Circumpolar volume transport - “eddy saturation”                                (Munday et al., 2013)

cf. Straub (1993), Hallberg and Gnanadesikan (2001), Tansley and Marshall (2001), 
     Hallberg and Gnanadesikan (2006), Meredith and Hogg (2006), Hogg and Blundell (2010),    
     Farneti et al. (2010), Farneti and Delworth (2010), Hogg and Munday (2014), ... , ...

experiments interpolated to the new grid spacing. The 28
were initialized from a set of very coarse 48 experiments
and the ½8 experiments were then initialized from the
result of the 28 experiments. After 1000 years, the ½8
results were then interpolated to 1/68, and these experi-
ments begun.2 Where time-average results are discussed,
the 28 experiments have been averaged over 1000 years,
the ½8 over 100 years, and the 1/68 over 10 years.

3. Key results

The key results of our numerical experiments are
summarized in Fig. 3, where the relationship between the
time-mean ‘‘circumpolar’’ transport (the zonal transport
through the re-entrant channel) and the strength of the
wind forcing (Fig. 3a) and diapycnal diffusivity (Fig. 3b)
are shown.Different averaging periods are used for each
grid spacing; 1000 years for 28, 100 years for ½8, and
10 years for 1/68. The bars represent two standard de-
viations of the instantaneous monthly transport about
the mean. They indicate the instantaneous variability of
the circumpolar current, rather than the standard error
in the mean, which is extremely small due to the large
number of sample values in the averaging period.

Examination of Fig. 3a demonstrates that the noneddy-
resolving model (28, blue line) behaves like other global
climate models employing a constant GM coefficient,
that is, the circumpolar transport changes strongly with
the wind stress (Fyfe and Saenko 2006). Even with no
wind at all (t0 5 0 N m22) a significant TACC of;50 Sv
occurs. This transport occurs for the reasons elucidated
by Munday et al. (2011), that is, that the pycnocline to
the north of the ACC is deepened by diapycnal mixing,
even in the absence of wind. This then leads to a con-
siderable circumpolar transport via thermal wind shear.
The increase in TACC with wind forcing continues across
the extreme range considered here, which reaches a
peak wind stress of 1.0 N m22, compared to the basic
state value of 0.2 N m22. The increase in transport does
not remain linear with wind stress, although it is close to
this limit across many of the experiments. The reader
should note that no error bars are shown on the D 5 28
line of Fig. 3a as the variability is so low that they would
be smaller than the plotted symbol in most cases.
When the grid spacing is refined to ½8 (red line), and

again to 1/68 (green line), the model behaves like the
high-resolution numerical models discussed in section 1.
In other words, TACC ‘‘saturates’’ at some finite value of
wind stress and ceases to increase with further increases
in wind stress. Indeed, for the first time our 1/68 exper-
iments demonstrate that such saturation may take
place with no wind at all, since the increase in vari-
ability effectively makes the green line on Fig. 3a in-
distinguishable from flat. The extreme range of wind
forcing considered in the experiments presented here

FIG. 3. Sensitivity of the circumpolar transport to (a) the wind stress and (b) the diapycnal diffusivity. The ‘‘error
bars’’ are two standard deviations around the long-term mean, calculated from instantaneous monthly values
throughout the averaging period. The 28 (blue) experiments are averaged over 1000 years, the ½8 (red) experiments
over 100 years, and the 1/68 (green) experiments over 10 years.

2 For reasons of numerical stability it was found to be easier to
initialize the 1/68 diapycnal diffusivity experiments from the 48 ex-
periments used to initialize the 28 experiments. In some cases, this
leads to a noticeable lag between the 1/68 basic state and the 12
experiments that make up the rest of the 1/68 diapycnal diffusivity
suite.
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Motivation and background
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⇒	Southern Ocean eddies important for setting: 
• global stratification;
• ocean heat content;
• equilibrium atmospheric CO2;
• ocean heat and carbon uptake;
• global sea level change;
• ocean adjustment time scale.



Eady (1949) model of baroclinic instability

• uniform rotation
• uniform stratification
• uniform shear z

6.6 The Eady Problem 283
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Fig. 6.12 Left column: Vertical structure of the most unstable Eady mode. Top: con-
tours of streamfunction. Middle: temperature, proportional to @ =@z . Bottom: merid-
ional velocity, proportional to @ =@y . Negative contours are dashed, and two complete
wavelengths are present in the horizontal. Poleward flowing (positive v) air is generally
warmer than equatorward flowing air. Right column: Same, but now for a wave just be-
yond the short-wave cut-o�. There is no phase-tilt in the vertical, and the temperature
perturbations at the upper and lower boundaries are no longer able to interact.

Scale of maximum instability: Lmax ⇤ 3:9Ld ⇤ 4000 km; (6.96)

Growth Rate: � ⇤ 0:3
U

Ld
⇤ 0:3 � 10

106
s�1 ⇤ 0:26 day�1:

(6.97)

For the ocean

For the main thermocline in the ocean let us choose

H ⇥ 1 km U ⇤ 0:1 m s�1 N ⇥ 10�2 s�1: (6.98)
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(figure: adapted from Vallis 2006)
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Classical paradigm for location/structure of ocean eddies: 

energy growth rate for most unstable mode: 
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1.5 Ocean eddies

At any instant, the circulation of the oceans looks very different to the

mean patterns outlined above due to the presence of intense ocean eddies.

The characteristic scale of both ocean eddies and atmospheric weather

systems is controlled by the Rossby deformation radius, O(1000 km) in

the atmosphere and O(30 km) in the ocean:

Composite satellite image showing atmospheric cloud cover and a proxy

for surface biological activity.

OC1-16

Composite satellite image showing cloud cover and ocean (pseudo) colour:

(figure: visibleearth.nasa.gov / SeaWIFS)



  

James R Maddison

Eddy Parameterisation Problem

Comparison with atmospheric modelling:
 

A 1o ocean model is analogous, in terms of mesoscale eddy 
resolution, to a 30o atmospheric model:

Conversely, a 1o atmospheric model is analogous, in terms of 
mesoscale eddy resolution, to a 1/30o ocean model.

(After P Killworth)

10/02/12 4/52

In terms of mesoscale eddy resolution, a 1o ocean model ~ 30o atmosphere model:

Conversely, a 1o atmosphere model ~ 1/30o ocean model
(after Peter Killworth)



http://topex-www.jpl.nasa.gov

reversal of the shear direction, the predominant direction is west-
wards, thus the waves propagate against the current at certain
depths, which will be discussed below.

Both the growth rate xi and the wavelength Lbci of Fig. 1 are
rather noisy in space. This results from the noisy characteristics
of the WOCE climatology, which appears to be less smoothed in
space compared to other climatologies, e.g. Boyer et al. (2006).4

We see the least noisy results for our linear stability analysis using
hydrography from dynamically adjusted assimilation products (not
shown) as also used in Tulloch et al. (2011). We show no results
using such hydrographic climatologies here since we do not expect
any qualitative effect on our results.

3.2. Eddy kinetic energy

The magnitude of diffusivities calculated with Eqs. (8) and (10)
depends largely on the chosen amplitude function w0 ¼ Kw ci Lbci. To
support our choice of the amplitude function and to demonstrate
the natural limitations of our analysis, we calculate eddy kinetic
energy (EKE) from the fastest growing wave solution and compare
it to EKE diagnosed from the global eddy-permitting circulation
model by von Storch et al. (2012) as deviations from seasonal
means, and to an observational estimate by Scharffenberg and

Stammer (2010).5 The EKE related to the linear stability analysis is
given by

u02 þ v 02
2

¼ w2
0

4
k2Reð//$Þ ð12Þ

where k and / are the respective quantities of the fastest growing
wave, and with w0 given by the ad hoc scaling Eq. (11). The EKE
from the linear stability analysis at 150 m depth averaged on a
3& ' 3& horizontal grid is shown in Fig. 2(a), together with the EKE
simulated by the model (Fig. 2(b)) and the near surface observa-
tional estimate (Fig. 2(c)). We use 150 m depth to compare observa-
tions, model and linear stability analysis, since we have to exclude
the mixed layer. Fig. 3 compares the zonal mean EKE from the linear
stability analysis and the numerical simulation.

Near the surface, the EKE from the linear stability analysis
seems to capture the regions of maximum EKE in the ACC and
the large western boundary currents reasonably well, which can
be seen both in the circulation model and the observational esti-
mates. On the other hand, the magnitudes of the EKE maxima in
Fig. 2(a) are smaller than in the model and closer to the observa-
tional estimates. This might point towards an overestimation of
EKE by the model, but on the other hand, it is known that observa-
tional EKE estimates based on satellite altimeter data tend to show

Fig. 1. Growth rate xi in d(1 (a) and wavelength Lbci ¼ 2p=k in km (c) of the fastest growing baroclinic mode of profiles from WOCE data. Note the nonlinear color scale.
Length scales of slowly growing modes (xi < 0:005 d(1) are left white. Also shown are the zonally averaged values of xi and Lbci (black, b,d) and the zonally and vertically
averaged zonal geostrophic flow U in cm s(1 (blue, (b)) and 2pRdef , where Rdef denotes the zonally averaged first baroclinic Rossby radius (blue, (d)). (For interpretation of the
references to colour in this figure caption, the reader is referred to the web version of this article.)

4 We prefer the WOCE climatology since it is interpolated on isopycnals instead of
geopotentials which reduces excessive diapycnal mixing and the creation of spurious
water masses by the interpolation method.

5 This dataset can be found at http://www.icdc.zmaw.de/jtp_velocity_anomaly.
html.
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Gent and McWilliams (1990): 

eddies mix along isopycnals (Redi 1982) ... 

can relate eddy diffusivity,    , to mean flow (e.g., Visbeck et al. 1997)
                                               or eddy energy (Eden and Greatbatch 2008)
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FIG. 9. Area-averaged depth of density surfaces for model resolu-
tions with different ratios of A�/Au after 10 yr (see Table 3).

TABLE 3. Biharmonic diffusion coefficients for experiments
detailed in section 3c. All experiments have K� ⌅ 3 ⇤ 10⇥5 m2 s⇥1.

Expt
Resolution
(deg)

A�

(1010 m4 s⇥1)
Au

(1010 m4 s⇥1)

R4-1
R4-2
R4-3

1/4
1/4
1/4

18.0
6.0
18.0

6.0
6.0
72.0

ments in model behavior, for example, a sharper ther-
mocline, improved heat transports, and a restriction
of deep convection to places where it is known to
occur (Danabasoglu et al. 1994). Most of these im-
provements can be attributed to the complete removal
of horizontal diffusion of temperature and salinity,
which eliminates the Veronis effect. Our results sug-
gest that an adiabatic subgrid parameterization will
be necessary, even in models that resolve or partially
resolve mesoscale eddies.
One possibility might be to use a shape-preserving

advection scheme (e.g., the flux-corrected transport al-
gorithm; Boris and Book 1973), which would enable
explicit temperature diffusion to be excluded. However,
Thuburn (1995) has shown that the implicit numerical
diffusion acting on a grid-scale structure as it is advected
across a grid cell by a shape-preserving algorithm is
finite and comparable to that obtained using standard
biharmonic diffusion. Thus, it is not apparent that such
schemes will remove the Veronis effect to a satisfactory
degree.

In this section, we investigate the extent to which
the retention of water masses can be improved by im-
plementing the adiabatic GM90 scheme in our ideal-
ized numerical model. We then propose a new scale-
selective variation of the scheme for use in eddy-per-
mitting models.

a. Gent and McWilliams scheme

Gent and McWilliams (1990) parameterize the lateral
turbulent mixing term F � in (16) by4

��
�F ⌅ ⇥ u*·�� ⌥ w* , (20)� ⇥�z

where

� �b �b
u* ⌅ ⌃ , w* ⌅ ⇥� · ⌃ , (21)� ⇥ � ⇥�z �b /�z �b /�z

and b is buoyancy.
The effectiveness of the scheme in preserving the

model’s water masses is shown in Fig. 10. Here we plot
the mean depth of the isopycnals after 10 years in runs
employing GM90 at 1⇧ and 1⁄4⇧ resolution. For compar-
ison the equivalent results from integrations employing
biharmonic horizontal diffusion are also shown. The
transfer coefficients ⌃ used in the GM90 runs are 400
and 100 m2 s⇥1 at 1⇧ and 1⁄4⇧ respectively; the numerical
discretization is given in the appendix. There is no ver-
tical diffusion in each of these experiments, and thus
the initial water mass profile should be exactly preserved
in a perfect model. We find that the use of GM90 greatly
reduces the loss of light water masses from the model.
The temperature of the main thermocline is also much
better preserved using GM90 at 1⇧ resolution, but the
thermocline cools at 1⁄4⇧ resolution due to vertical mo-
tions that develop at the grid scale around the lateral
boundaries.

b. Scale-selective parameterization

The GM90 scheme has been developed primarily as
a parameterization of mesoscale eddies for use in coarse-
resolution ocean models. While GM90 has been used
in eddy-resolving models (Haines and Wu 1998, sub-
mitted to J. Mar. Sys.), it is not ideally suited to this
purpose: GM90 is less scale selective than biharmonic
diffusion and strongly damps eddies and fronts in ad-
dition to grid-scale structures.
The GM90 scheme is based on two key assumptions:

(i) eddies flux isopycnal layer thickness downgradient
and (ii) the eddies are dissipated adiabatically, that is,

4 In general, one should also include a diffusion of temperature,
salinity, and other water mass properties along density surfaces. In
our model, however, this term is identically zero due to the use of a
constant salinity.

adiabatic parameterisation of baroclinic instability

... and advect by an eddy bolus velocity - flattens isopycnals (Gent et al. 1995)

w*

u* removes available potential energy

u⇤ =
@

@z

✓

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GEOMETRIC

Goal: Develop a framework for parameterising and interpreting 
          ocean eddy-mean flow interaction in which the relevant 
          symmetries and conservation laws are preserved  



@ug

@t
= . . .�r ·E+ forcing - dissipation

(Marshall et al, 2012; Maddison and Marshall, 2013)

Consider (quasi-geostrophic) “residual-mean” momentum equation

eddy force

@E

@t
= r · (. . .) + u · (r ·E) + forcing - dissipation

with an explicit eddy energy equation 

(cf. Eden and Greatbatch, 2008)
- work done by

eddies on mean flow

important: generalises to thickness-weighted averaged primitive equations 
                                                                                 (Young, 2012; Maddison and Marshall, 2013)



S =
f0

N 2
0

v�b�R =
f0

N 2
0

u�b� eddy buoyancy flux / “eddy form stress”
   
   

where: M =
v�2 � u�2

2
Reynolds stressesN = �u�v�

eddy potential energyP =
b�2

2N 2
0

(Plumb 1986)

Eddy force is the divergence of the eddy stress tensor: 

“Taylor identity”

E =

0

@
�M + P N 0

N M + P 0
�S R 0

1

A

eddy force = �k⇥ q0u0
= �r ·E



3. Reduces to Gent and McWilliams (1990) if we only parameterise 
         the vertical momentum fluxes. 

1. This is a mathematical identity!          (down-gradient flux ≠ divergence of a tensor)

2. Momentum constraints preserved with appropriate boundary conditions: 

Why? 
E =

0

@
�M + P N 0

N M + P 0
�S R 0

1

A
eddy force = �k⇥ q0u0

= �r ·E



4. Suppose we solve an eddy energy equation (Eden and Greatbatch, 2008) 

This means there are no remaining dimensional unknowns! 

⇒ eddy energy is known

This eddy energy gives a bound on the magnitude of the eddy stress tensor: 

over many time levels, we have

N 2
0

2f 2
0

(R2 + S2) ⇤ 2KP ⇤ E2

2
. (10)

This result emphasises that one needs both eddy potential energy and eddy
kinetic energy in order to achieve an eddy buoyancy flux. If either is absent,
then there are either no buoyancy anomalies to transport or no eddy velocity
to transport the anomalies respectively. The latter inequality follows by noting
P = E �K and maximizing the resultant quadratic.

Summing each of the above results, we find the final result:

1

2

�

(�N)2 + (M � P )2 + (M + P )2 +N2 +
N 2

0

f 2
0

(R2 + S2)

⇥

=

M2 +N2 + P 2 +
N 2

0

2f 2
0

(R2 + S2)⇤E2 (11)

where

E = K + P =
u� · u�

2
+

b�2

2N 2
0

is the total eddy energy.

This result is useful for a number of reasons:

(i) It places an upper bound on the magnitude of the eddy fluxes that we wish
to parameterize.

(ii) The eddy energy is a quantity that can be easily calculated as a prognostic
variable in an eddy closure following the approach of Eden and Greatbatch
(2008), Marshall and Adcroft (2009).

(iii) The fact that the eddies are bounded by the total eddy energy, rather than
the eddy kinetic energy (as used in Eden and Greatbatch 2008) is especially
helpful since it is the total eddy energy that grows or decays at the expense
of mean energy.

2.4 Plane wave limit

It is helpful to briefly consider the simpler scenario of plane waves, in which
case the eddy stress tensor components have a further simple physical inter-
pretation.
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5. This allows us to rewrite the eddy stress tensor in terms of the eddy energy, 
    two non-dimensional eddy anisotropies, and three eddy angles: 

     horizontal angles vertical angle

P = E sin2 �

R = �b
f0
N0

E cos�b sin 2�

M = ��mE cos 2�m cos

2 � N = �mE sin 2�m cos

2 �

S = �b
f0
N0

E sin�b sin 2�

3. A new framework

In this project, we propose a new  approach in which we rewrite the eddy flux of  quasigeostrophic 
potential vorticity as the divergence of an eddy stress tensor (Plumb 1986): 

where

The terms, M and N, represent the eddy Reynolds stresses, P is the eddy potential energy, and R 
and S represent the eddy form stresses (or eddy buoyancy fluxes); f0 and N0 are the Coriolis 
parameter and buoyancy frequency, and b is buoyancy. 

Writing the eddy flux of potential vorticity in this form is useful for a number of reasons: 
(i) If boundary conditions are correctly applied to the individual components of  the eddy stress 

tensor, then any angular momentum constraints are guaranteed to be satisfied. 
(ii) The eddy form stresses, R and S, are precisely the terms parameterised in the popular Gent 

and McWilliams closure. This is thus a natural framework for extending Gent and McWilliams to 
account for eddy momentum fluxes. 

(iii) The second column in the eddy stress tensor is the three-dimensional Eliassen-Palm flux, 
which has been discussed in detail in the meteorological context (e.g., Plumb 1985) and is also 
associated with the propagation of wave activity (Andrews and McIntyre 1976). 

(iv) Of  particular interest (as far as we are aware, this is a new  result) is that a rigorous upper 
bound exists for the weighted square sum of the five quantities contributing to the eddy stress 
tensor in terms of the total eddy energy:  

This allows the components of  the eddy stress tensor to be rewritten, without loss of generality, 
in terms of the eddy energy, E, two eddy anisotropies, " and !, and three eddy flux angles, 
#, # and $:

The eddy anisotropies are bounded 
by 0 and 1. At a simple conceptual 
level, one can interpret the eddy 
anisotropies as measuring the mean 
“shape” of the eddies. This is 
illustrated in Fig. 1 for the lateral 
anisotropy, ". The eddy flux angles 
measure the direction of anisotropy. 
The vertical angle also quantifies 
the partitioning of  eddy energy 
between kinetic and potential forms. 

(v) Eddy energy is easily carried as a prognostic model variable, following Eden and Greatbatch 
(2008). Note that it is the total, and not kinetic, eddy energy that is required. 

(vi) There is no eddy length scale to be prescribed. Spatial structure in the eddy fluxes of potential 
vorticity arises purely from spatial structure of  the eddy energy field and/or eddy flux angles 
and eddy anisotropies. 

(vii)The eddy flux angles have a strong connection with classical instability theory. When eddies 
lean “against” the mean horizontal or vertical shear, they extract energy from the mean flow, 
i.e., the flow  is unstable; conversely, when eddies lean “into” the mean horizontal or vertical 
shear, they return energy to the mean flow, i.e., the mean flow is stable. 

 

Fig. 1: Schematic diagram of: (a) a circular eddy which has 
no anisotrophy ("=0) and no meridional eddy flux of zonal 
momenum; (b) an anisotropic eddy  ("=1) with a positive 
meridional eddy flux of zonal momentum. 

u�v� = 0 u�v� > 0

� = 0 � = 1

Feddy = −k × Q′u′

(see, for example, Wardle and Marshall 2000, Ferreira and Marshall 2006).

b. Angular momentum constraint

Consider the specific case of a zonal, periodic channel of uniform depth. Integrating the
eddy flux of potential vorticity over the channel, it is easily shown that (refs)

∫ ∫ ∫

Q′v′ dx dy dz =
∫ ∫ ∫

F (x)
eddy dx dy dz = 0. (7)

This is equivalent to the statement that eddies can only redistribute, but not create,
angular momentum.

Now suppose that the eddy flux of potential vorticity is parameterized through a down-
gradient closure,

Q′v′ = −κ
∂Q

∂y
⇒

∫ ∫ ∫

Q′v′ dx dy dz ̸= 0

unless very strong constraints are imposed on κ (Green 1970).

Instead, we we seek a formulation of the eddy potential vorticity flux which guaran-
tees angular momentum is conserved. To achieve this, we note that the eddy potential
vorticity flux can be written as the divergence of an eddy stress tensor (Plumb 1986):

Q′u′ = ∇ ·

⎛

⎜

⎝

−N M − P
M + P N

R S

⎞

⎟

⎠
. (8)

Here

M =
v′2 − u′2

2
, N = u′v′, P =

b′2

2N 2
0

, R =
f0

N 2
0

b′u′, S =
f0

N 2
0

b′v′.

Boundary conditions are R = S = 0 at the sea surface and sea floor (the latter is assumed
flat for now — not sure how to modify this for a sloping bottom — might be some
unexpected surprises but my gut instinct is that all will work out!) On lateral boundaries,
M = K cos 2φ and N = −K sin 2φ where φ is the angle at which the boundary is oriented
with respect to the x axis and K is the eddy kinetic energy. (For no-slip boundaries,
which are the most likely to be encountered in ocean models, M = N = 0.)

c. A bounded norm for the eddy stress tensor

Firstly, we note that the components of the eddy stress tensor, M and N , and bounded
by

M2 + N2 ≤ K2 (9)

where

K =
u′ · u′

2

3

d. Plane wave limit

It is helpful to briefly consider the simpler scenario of plane waves, in which case the
eddy stress tensor components have a further simple physical interpretation.

Specifically, we define the “puesdo velocity” vector

U′ =

(

u′, v′,
b′

N0

)

=

(

−∂ψ′

∂y
,
∂ψ′

∂x
,

f0

N0

∂ψ′

∂z

)

,

which represents the eddy velocity in the horizontal but a weighted measure of buoyancy
anomalies in the vertical. It follows that

E =
U′ · U′

2
.

We can now write:
U′ = |U′|(cosφ cos λ, sin φ cosλ, sin λ)

where φ and λ represent the orientation of the pseudo velocity vector in the horizontal
and vertical respectively (see Figure). Substituting these into the expressions for the
eddy stress tensor components we find:

M = E cos 2φ cos2 λ, N = −E sin 2φ cos2 λ, P = E sin2 λ,

R =
f0

N0
E cos φ sin 2λ, S =

f0

N0
E sin φ sin 2λ.

Note that inequalities discussed in subsection c become equalities in this plane wave
limit.

e. Arbitrary eddy field

More generally we need to introduce “anisotropy parameters” into these expressions
to account for the fact that the direction of the psuedo velocity vector fluctuates with
time. These anisotropy parameters are bounded by zero and unity, with a value of unity
corresponding to the plane wave limit (where the pseudo velocity vector has a single
direction at each point) and a value of zero corresponding to a completely isotropic eddy
field with no preferred orientation of the psuedo velocity vector.

Without any loss of generality, we can rewrite the components of the eddy stress tensor
for an arbitrary eddy field in the form:

M = γE cos 2φ cos2 λ, N = −γE sin 2φ cos2 λ, P = E sin2 λ,

R = α
f0

N0
E cos φ̃ sin 2λ, S = α

f0

N0
E sin φ̃ sin 2λ. (12)

Note that the angles in the above expressions need no longer relate in a straightforward
manner to the equivalent angles (now fluctuating) instantaneous pseudo velocity vector.

5

Feddy = −k × Q′u′

(see, for example, Wardle and Marshall 2000, Ferreira and Marshall 2006).

b. Angular momentum constraint

Consider the specific case of a zonal, periodic channel of uniform depth. Integrating the
eddy flux of potential vorticity over the channel, it is easily shown that (refs)

∫ ∫ ∫

Q′v′ dx dy dz =
∫ ∫ ∫

F (x)
eddy dx dy dz = 0. (7)

This is equivalent to the statement that eddies can only redistribute, but not create,
angular momentum.

Now suppose that the eddy flux of potential vorticity is parameterized through a down-
gradient closure,

Q′v′ = −κ
∂Q

∂y
⇒

∫ ∫ ∫

Q′v′ dx dy dz ̸= 0

unless very strong constraints are imposed on κ (Green 1970).

Instead, we we seek a formulation of the eddy potential vorticity flux which guaran-
tees angular momentum is conserved. To achieve this, we note that the eddy potential
vorticity flux can be written as the divergence of an eddy stress tensor (Plumb 1986):
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⎜

⎝

−N M − P
M + P N

R S

⎞

⎟

⎠
. (8)
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Boundary conditions are R = S = 0 at the sea surface and sea floor (the latter is assumed
flat for now — not sure how to modify this for a sloping bottom — might be some
unexpected surprises but my gut instinct is that all will work out!) On lateral boundaries,
M = K cos 2φ and N = −K sin 2φ where φ is the angle at which the boundary is oriented
with respect to the x axis and K is the eddy kinetic energy. (For no-slip boundaries,
which are the most likely to be encountered in ocean models, M = N = 0.)

c. A bounded norm for the eddy stress tensor

Firstly, we note that the components of the eddy stress tensor, M and N , and bounded
by

M2 + N2 ≤ K2 (9)

where

K =
u′ · u′

2

3

is the eddy kinetic energy (Hoskins et al. 1983). To prove this result, note that the result
is an equality at any instant in time, then apply the triangle theorem to the summation
over many time levels. Indeed Hoskins et al. further note that for barotropic plane
waves, the “E-vector”, (M, N) = Kĉg where ĉg is a unit vector defining the direction of
group propagation.

Secondly, we note that P is exactly the eddy potential energy.

Thirdly, again through application of the triangle inequality to the summation over many
time levels, we have

N 2
0

2f 2
0

(R2 + S2) ≤ 2KP ≤ E2

2
. (10)

This result emphasises that one needs both eddy potential energy and eddy kinetic
energy in order to achieve an eddy buoyancy flux. If either is absent, then there are
either no buoyancy anomalies to transport or no eddy velocity to transport the anomalies
respectively. The latter inequality follows by noting P = E − K and maximizing the
resultant quadratic.

Finally summing each of the above results, we find the final result:1

M2 + N2 + P 2 +
N 2

0

2f 2
0

(R2 + S2) ≤ E2 (11)

where

E = K + P =
u′ · u′

2
+

b′2

2N 2
0

is the total eddy energy.

This result is useful for a number of reasons:

(i) It places an upper bound on the magnitude of the eddy fluxes that we wish to
parameterize.

(ii) The eddy energy is a quantity that can be easily calculated as a prognostic variable
in an eddy closure following the approach of Eden and Greatbatch (2008), Marshall and
Adcroft (2009).

(iii) The fact that the eddies are bounded by the total eddy energy, rather than the eddy
kinetic energy (as used in Eden and Greatbatch 2008) is especially helpful since it is the
total eddy energy that grows or decays at the expense of mean energy.

1Alternatively, one can write the inequality in terms of a norm of the eddy stress tensor defined as
the weighted sum of the squares of the six individual components:

1

2

[

(−N)2 + (M − P )2 + (M − P )2 + N2 +
N 2

0

f2
0

(R2 + S2)

]

≤ E.
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6. Eddy angles have a strong connection with classical stability theory: 

        eddies lean “against” mean shear ⇒ extract energy from mean flow - instability;
        eddies lean “into” mean shear ⇒ return energy to mean flow - stability. 

     
eddy force
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N<0
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(Waterman et al. 2011)
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Initial implementation: focus only on vertical “eddy form stress” 

S = ↵
|f |
N

E

eddy form stress is:

)  = ↵
N

M2
E (|↵|  1)

only freedom is to specify the nondimensional parameter,  )  = ↵
N

M2
E (|↵|  1)

Gent and McWilliams eddy diffusivity is:

 = ↵
N

@b/@y
E

)  = ↵
N

M2
E (|↵|  1)

,

vertical momentum transfer is equivalent to Gent and McWilliams 
                           (Greatbatch and Lamb, 1990; Greatbatch, 1998)

p+p+p+p+ p�p�p�p�p�



6.6 The Eady Problem 283
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Fig. 6.12 Left column: Vertical structure of the most unstable Eady mode. Top: con-
tours of streamfunction. Middle: temperature, proportional to @ =@z . Bottom: merid-
ional velocity, proportional to @ =@y . Negative contours are dashed, and two complete
wavelengths are present in the horizontal. Poleward flowing (positive v) air is generally
warmer than equatorward flowing air. Right column: Same, but now for a wave just be-
yond the short-wave cut-o�. There is no phase-tilt in the vertical, and the temperature
perturbations at the upper and lower boundaries are no longer able to interact.

Scale of maximum instability: Lmax ⇤ 3:9Ld ⇤ 4000 km; (6.96)

Growth Rate: � ⇤ 0:3
U

Ld
⇤ 0:3 � 10

106
s�1 ⇤ 0:26 day�1:

(6.97)

For the ocean

For the main thermocline in the ocean let us choose

H ⇥ 1 km U ⇤ 0:1 m s�1 N ⇥ 10�2 s�1: (6.98)
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Proof of concept 1: Eady problem

Eady growth rate 
if α = 0.61

Eddy energy budget:

=

Z Z Z
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S dx dy dz.

integrate by parts

(Marshall et al., 2012)
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Proof of concept 2: Eddy diffusivity          (Bachman et al., 2017)
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Figure 1: Schematic of Eady model configuration and diagnostic procedure. The shear and stratification
at time t = 0 are constant, and the initial tracer profiles vary sinusoidally in y and z as in Bachman and
Fox-Kemper (2013). At later times after the front goes baroclinically unstable, the tracer concentrations are
zonally averaged, their meridional gradients and eddy fluxes are calculated, and a solution for  is obtained
by pseudoinverting (23) at each point on the yz-plane. The overall value for  at each output interval is taken
as the domain average of these solutions. In the inset panels the tracer gradients and fluxes may vary beyond
the given color scale, but the color limits are chosen to be suitable for all tracers shown. In the buoyancy
plots the aspect ratio of the domain has been stretch to illustrate both the along-channel and vertical aspects
of the turbulence; the actual density surfaces in the simulations are nearly flat.
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Figure 2: Scatter plots of domain-averaged scalings at each output interval, plotted for all sixteen simu-
lations. The di↵usivity diagnosed by the pseudoinversion is plotted along the x-axis, and the scalings are
plotted along the y-axis in each panel. Shown here are the scalings from (a) Marshall et al. (2012) with
↵ = 0.2, (b) Visbeck et al. (1997), (c) Bachman and Fox-Kemper (2013), (d) Eden and Greatbatch (2008),
and (e) Fox-Kemper et al. (2008). The diagonal, dashed black line represents perfect agreement between the
diagnosed di↵usivity and the scaling.
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(Bachman et al., 2017)
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Figure 1: Schematic of Eady model configuration and diagnostic procedure. The shear and stratification
at time t = 0 are constant, and the initial tracer profiles vary sinusoidally in y and z as in Bachman and
Fox-Kemper (2013). At later times after the front goes baroclinically unstable, the tracer concentrations are
zonally averaged, their meridional gradients and eddy fluxes are calculated, and a solution for  is obtained
by pseudoinverting (23) at each point on the yz-plane. The overall value for  at each output interval is taken
as the domain average of these solutions. In the inset panels the tracer gradients and fluxes may vary beyond
the given color scale, but the color limits are chosen to be suitable for all tracers shown. In the buoyancy
plots the aspect ratio of the domain has been stretch to illustrate both the along-channel and vertical aspects
of the turbulence; the actual density surfaces in the simulations are nearly flat.
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Figure 2: Scatter plots of domain-averaged scalings at each output interval, plotted for all sixteen simu-
lations. The di↵usivity diagnosed by the pseudoinversion is plotted along the x-axis, and the scalings are
plotted along the y-axis in each panel. Shown here are the scalings from (a) Marshall et al. (2012) with
↵ = 0.2, (b) Visbeck et al. (1997), (c) Bachman and Fox-Kemper (2013), (d) Eden and Greatbatch (2008),
and (e) Fox-Kemper et al. (2008). The diagonal, dashed black line represents perfect agreement between the
diagnosed di↵usivity and the scaling.
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Proof of concept 3: Eddy saturation          (Mak et al., 2017)

2-d model; solve prognostic equation for domain-averaged eddy energy

eddy saturation is an emergent property     (more in James’ talk) 

GEOMETRIC
       (Mak et al., 2017) 

experiments interpolated to the new grid spacing. The 28
were initialized from a set of very coarse 48 experiments
and the ½8 experiments were then initialized from the
result of the 28 experiments. After 1000 years, the ½8
results were then interpolated to 1/68, and these experi-
ments begun.2 Where time-average results are discussed,
the 28 experiments have been averaged over 1000 years,
the ½8 over 100 years, and the 1/68 over 10 years.

3. Key results

The key results of our numerical experiments are
summarized in Fig. 3, where the relationship between the
time-mean ‘‘circumpolar’’ transport (the zonal transport
through the re-entrant channel) and the strength of the
wind forcing (Fig. 3a) and diapycnal diffusivity (Fig. 3b)
are shown.Different averaging periods are used for each
grid spacing; 1000 years for 28, 100 years for ½8, and
10 years for 1/68. The bars represent two standard de-
viations of the instantaneous monthly transport about
the mean. They indicate the instantaneous variability of
the circumpolar current, rather than the standard error
in the mean, which is extremely small due to the large
number of sample values in the averaging period.

Examination of Fig. 3a demonstrates that the noneddy-
resolving model (28, blue line) behaves like other global
climate models employing a constant GM coefficient,
that is, the circumpolar transport changes strongly with
the wind stress (Fyfe and Saenko 2006). Even with no
wind at all (t0 5 0 N m22) a significant TACC of;50 Sv
occurs. This transport occurs for the reasons elucidated
by Munday et al. (2011), that is, that the pycnocline to
the north of the ACC is deepened by diapycnal mixing,
even in the absence of wind. This then leads to a con-
siderable circumpolar transport via thermal wind shear.
The increase in TACC with wind forcing continues across
the extreme range considered here, which reaches a
peak wind stress of 1.0 N m22, compared to the basic
state value of 0.2 N m22. The increase in transport does
not remain linear with wind stress, although it is close to
this limit across many of the experiments. The reader
should note that no error bars are shown on the D 5 28
line of Fig. 3a as the variability is so low that they would
be smaller than the plotted symbol in most cases.
When the grid spacing is refined to ½8 (red line), and

again to 1/68 (green line), the model behaves like the
high-resolution numerical models discussed in section 1.
In other words, TACC ‘‘saturates’’ at some finite value of
wind stress and ceases to increase with further increases
in wind stress. Indeed, for the first time our 1/68 exper-
iments demonstrate that such saturation may take
place with no wind at all, since the increase in vari-
ability effectively makes the green line on Fig. 3a in-
distinguishable from flat. The extreme range of wind
forcing considered in the experiments presented here

FIG. 3. Sensitivity of the circumpolar transport to (a) the wind stress and (b) the diapycnal diffusivity. The ‘‘error
bars’’ are two standard deviations around the long-term mean, calculated from instantaneous monthly values
throughout the averaging period. The 28 (blue) experiments are averaged over 1000 years, the ½8 (red) experiments
over 100 years, and the 1/68 (green) experiments over 10 years.

2 For reasons of numerical stability it was found to be easier to
initialize the 1/68 diapycnal diffusivity experiments from the 48 ex-
periments used to initialize the 28 experiments. In some cases, this
leads to a noticeable lag between the 1/68 basic state and the 12
experiments that make up the rest of the 1/68 diapycnal diffusivity
suite.
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Fig. 1. Initial stratification and equilibrium stratification from the spinup of the control run with τ0 = 0 . 2 N m −2 , λ = 2 × 10 −7 s −1 and α = 0 . 1 using the GEOM variant 
(leading to an emergent κ = 800 m 2 s −1 ). The same contour levels are used for both panels. 

Fig. 2. Transport at varying ( a ) peak wind forcing τ 0 and ( b ) eddy energy dissipation rate λ for the four parameterisation variants. 
4.2. Results 

The transport associated with the equilibrium states with vary- 
ing values for τ 0 and λ are shown in Fig. 2 . It is clear that CONST 
and VMHS ∗ show significant sensitivity of the mean transport with 
respect to the peak wind stress. By contrast, the ML variant shows 
reduced sensitivity. Notably, the GEOM variant shows very low 
sensitivity to varying wind stress, and thus exhibits emergent eddy 
saturation. For varying eddy energy dissipation rate λ, CONST and 
VMHS ∗ are by construction independent of λ, while the ML and 
GEOM variants show increased transport with increased dissipa- 
tion. These observed behaviours are consistent with the analysis 
given in Section 2.2 . 

Denoting the domain average by 
⟨·⟩ = 1 

L y L z 
∫ ∫ 

(·) d y d z, (38) 
the emergent κ and ⟨ E ⟩ are shown in Fig. 3 . The ML and VMHS ∗
variants show a sub-linear dependence of the emergent κ on the 
peak wind stress τ 0 , while the GEOM variant exhibits an almost 
linear dependence. For the ML and GEOM variants the emergent 
κ decreases with increasing λ. The scaling of κ and ⟨ E ⟩ with peak 
wind stress τ 0 , for the GEOM variant, is consistent with the ar- 
guments given in Section 2.2 . It is found here that increasing the 
dissipation decreases the emergent eddy energy level. 

The emergent eddy saturation property of the GEOM variant is 
not limited to this parameter set. Fig. 4 shows contour plots of 
the transport in ( τ 0 , λ) and ( τ 0 , α) parameter space. As expected, 

there is very little dependence of the transport on τ 0 and only at 
extreme parameter values is a variability seen in the contour plot. 
This shows robustness of the insensitivity to strength of peak wind 
over a range of parameters. 

To show how the other emergent properties of the GEOM vari- 
ant depend on α and λ, the transport, GM eddy transfer coefficient, 
and domain averaged eddy energy over ( λ, α) parameter space are 
shown in Fig. 5 . Increasing α reduces the mean transport as ex- 
pected, from the discussion in Section 2.2 . The GM eddy transfer 
coefficient κ is found to increase with increasing α. The values 
of the emergent κ are consistent with the emergent transport, al- 
though large values are observed where the parameterised eddies 
are very efficient (small λ, large α). The eddy energy has a more 
complex dependence on α, but for weaker dissipation increasing α
leads to a decrease in the eddy energy. 
5. Stratification dependent Gent–McWilliams eddy transfer 
coefficient 
5.1. Implementation details 

In this section a dependence of the GM eddy transfer coeffi- 
cient on the vertical stratification is introduced, again with four 
variants based upon the CONST, GEOM, ML, and VMHS ∗ discussed 
in Section 3.2 . The simplest CONST variant is now replaced with 
the form proposed in Ferreira et al. (2005) 
κ = κ0 S, S = N 2 

N 2 
ref . (39) 



- proposing to put into NEMO ocean model (partner with Carsten/TRR 181) 

Recipe for implementation in an ocean climate model 

2. Solve a prognostic equation for the depth-integrated eddy energy
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3. Rescale eddy diffusivity profile at each latitude/longitude to match energetic 
    constraint.  
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 0 = 0(z)
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1. Employ existing Gent and McWilliams code with prescribed eddy diffusivity profile
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Figure 3 | Sources (red) and sinks (blue) of eddy energy in the first baroclinic mode. These are estimated using satellite altimetry andWOCE
climatological data on the basis of (1) and binned in 2⇤ ⇥2⇤ boxes (Wm�2). Regions shallower than 300m deep are shaded in light grey. Note the
ubiquitous eddy-energy sinks (in blue) near the western boundary in each ocean basin. The colour scale is saturated to reveal regions of relatively
moderate eddy-energy sources and sinks.

Table 1 | Estimated sink (in terawatts) of eddy energy in the first baroclinic mode near the western boundary.

Ocean basin Altimetry +WOCE climatology Altimetry + reduced-gravity model
Linearized energy flux Plus EKE H= 750m

North Atlantic ⌅0.022 ⌅0.039 ⌅0.034
South Atlantic ⌅0.018 ⌅0.026 ⌅0.015
North Pacific ⌅0.027 ⌅0.041 ⌅0.038
South Pacific ⌅0.015 ⌅0.018 ⌅0.028
North Indian ⌅0.011 ⌅0.011 ⌅0.019
South Indian ⌅0.046 ⌅0.091 ⌅0.048

Total ⌅0.14 ⌅0.22 ⌅0.19

The values are calculated poleward of 10⇤ of latitude in each ocean basin from satellite altimetry and climatological data under different assumptions. Regions shallower than 300m deep are excluded
from our estimation.

sources and sinks are also intriguing. For example, in the North
Atlantic there is an eddy-energy source immediately to the east
of the New England Sea Mount and an eddy-energy sink in
the slope region to the west. This is presumably associated with
eddies generated through the Gulf Stream–New England Sea
Mount interactions, their subsequent propagation to the west
and ultimate dissipation along the sloping topography near the
western boundary.

An animation of sea-surface-height anomalies (see Supplemen-
tary Information) reveals that, except in the Antarctic Circum-
polar Current and separated Western Boundary Currents, eddies
propagate ubiquitously westward and impinge on the sloping
western boundary, where they disappear, as in the reduced-gravity
model. In the reduced-gravity model, there is only one baroclinic
mode and the only energy sink for eddies is lateral viscous dis-
sipation. However, in the ocean, interaction with sloping bottom
topography6,15,16,19, energy transfer from geostrophic eddies to
internal waves13,14,17–19 and conversion to higher modes are also
important. Regardless of the detailed mechanisms, both our model
and the satellite altimetry data point to the western boundaries as an
important region of energy loss for ocean eddies.

Using the altimetry data, we estimate the total eddy-energy con-
vergence near the western boundaries poleward of 10⇤ of latitude
to be approximately 0.14 TW (see Methods). This represents a
significant fraction of the 0.8 TWwindwork on the extra-equatorial
surface geostrophic motions10–12,27. The rate of eddy energy loss
from the first baroclinic mode near the western boundaries in each
ocean basin is listed in Table 1. We find that each hemisphere
removes more or less the same amount of eddy energy, even

though the majority of the wind energy input to the large-scale
ocean circulation is found in the Southern Ocean10–12,27. To test
the sensitivity of our estimates, we now diagnose the eddy-energy
sink under different assumptions. If we relax the assumption
of linearity in calculating the eddy energy flux and include the
eddy kinetic energy, the energy sink increases by about 50% (see
Table 1). An alternative is to use a reduced-gravity model, consis-
tent with the numerical simulations, in which equation (1) becomes
D= �h ·(⇥gHu⇧�⇧), where ⇥ is density. Assuming the eddy energy
is ultimately dissipated, the total sink near the western boundaries
is then about 0.2 TW if we choose H = 750m, consistent with our
numerical experiments (see Table 1). With a standard error of the
mean of the order of 10% (see Methods), Table 1 yields a range of
values from 0.12 to 0.25 TW for the eddy-energy sink. Given the
uncertainties in the data we use, we estimate that the total eddy
energy sink near the western boundaries poleward of 10⇤ of latitude
is approximately 0.1–0.3 TW.

Both theoretical arguments and numerical simulations show
that, in the presence of ocean-like stratification, the efficiency of
energy transfer from the first baroclinic mode to the barotropic
mode is greatly reduced, leading to a concentration of eddy energy
in the first baroclinic mode24. Dissipating eddies at the western
boundary are consistent with this picture and provide a potential
shortcut for removing energy input to the ocean, because the energy
can be removed directly at the mesoscale through excitation of
high-wavenumber vertical modes. This breaks the inverse energy
cascade to larger horizontal and vertical scales in the ocean
interior. Some of the dissipating processes may lead to enhanced
diapycnal mixing in the western boundary regions6. Numerical
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(Zhai et al., 2010)

Prognostic depth-integrated eddy energy equation: 

- already attempted by Eden and Greatbatch (2008) in 3-d with some success
- simpler here as only need 2-d depth-integrated eddy energy

eddy energy source: 
baroclinic instability
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Figure 1: Schematic of Eady model configuration and diagnostic procedure. The shear and stratification
at time t = 0 are constant, and the initial tracer profiles vary sinusoidally in y and z as in Bachman and
Fox-Kemper (2013). At later times after the front goes baroclinically unstable, the tracer concentrations are
zonally averaged, their meridional gradients and eddy fluxes are calculated, and a solution for  is obtained
by pseudoinverting (23) at each point on the yz-plane. The overall value for  at each output interval is taken
as the domain average of these solutions. In the inset panels the tracer gradients and fluxes may vary beyond
the given color scale, but the color limits are chosen to be suitable for all tracers shown. In the buoyancy
plots the aspect ratio of the domain has been stretch to illustrate both the along-channel and vertical aspects
of the turbulence; the actual density surfaces in the simulations are nearly flat.
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eddy energy sink: western boundaries 
(Zhai et al., 2010)

eddy energy sink: bottom drag (Sen et al., 2008);  
lee wave radiation (Naveira Garabato et al., 2004, ...)

Geophysical Research Letters 10.1002/2014GL060001

Figure 1. Zonal propagation speeds estimated from (a) observations, and linear Rossby wave theory (b) in the absence
of Doppler-shifting and (c) Doppler shifted by the depth mean velocity. Blue colors denote westward propagation, and
red colors indicate eastward propagation.

this region nor can horizontal variations in the depth mean flow be neglected in deriving the Doppler shift
velocity (see Cushman-Roisin [1993] for a dynamical treatment of this problem).

To provide a more quantitative comparison, in Figure 2 we plot the variation of the observed and theoretical
zonal propagation speeds, zonally averaged over a region in the Pacific Ocean (180◦E–230◦E). These are
plotted both as a function of latitude (Figure 2a) and as scatterplot (Figure 2b). These results suggest that

Figure 2. (a) Mean zonal mean propagation speeds from a region in the Pacific Ocean (180◦E–230◦E), inferred from
observations (black line) and linear Rossby wave theory in the absence of Doppler shifting (green line) and Doppler
shifted by the depth mean velocity (red line). (b) Scatterplot of observed propagation speeds versus theoretical phase
speeds in the absence of Doppler shifting (green dots) and Doppler shifted by the depth mean velocity (red dots) over
the same region. The lines show the mean of this distribution, obtained by binning, in the absence of Doppler shifting
(thick dash) and Doppler shifted by the depth mean velocity (thin dash).

KLOCKER AND MARSHALL ©2014. American Geophysical Union. All Rights Reserved. 3519

(Klocker and 
Marshall, 2014)

westward propagation
(Chelton et al. 2007)

diffusion of eddy energy 
(Eden and Greatbatch, 2008)



Depth-integrated eddy energy budget in NEMO 1/12o model - “model truth”

- how well can we parameterise its 
     eddy energy budget using a
     non eddy-resolving model?



Concluding remarks

experiments interpolated to the new grid spacing. The 28
were initialized from a set of very coarse 48 experiments
and the ½8 experiments were then initialized from the
result of the 28 experiments. After 1000 years, the ½8
results were then interpolated to 1/68, and these experi-
ments begun.2 Where time-average results are discussed,
the 28 experiments have been averaged over 1000 years,
the ½8 over 100 years, and the 1/68 over 10 years.

3. Key results

The key results of our numerical experiments are
summarized in Fig. 3, where the relationship between the
time-mean ‘‘circumpolar’’ transport (the zonal transport
through the re-entrant channel) and the strength of the
wind forcing (Fig. 3a) and diapycnal diffusivity (Fig. 3b)
are shown.Different averaging periods are used for each
grid spacing; 1000 years for 28, 100 years for ½8, and
10 years for 1/68. The bars represent two standard de-
viations of the instantaneous monthly transport about
the mean. They indicate the instantaneous variability of
the circumpolar current, rather than the standard error
in the mean, which is extremely small due to the large
number of sample values in the averaging period.

Examination of Fig. 3a demonstrates that the noneddy-
resolving model (28, blue line) behaves like other global
climate models employing a constant GM coefficient,
that is, the circumpolar transport changes strongly with
the wind stress (Fyfe and Saenko 2006). Even with no
wind at all (t0 5 0 N m22) a significant TACC of;50 Sv
occurs. This transport occurs for the reasons elucidated
by Munday et al. (2011), that is, that the pycnocline to
the north of the ACC is deepened by diapycnal mixing,
even in the absence of wind. This then leads to a con-
siderable circumpolar transport via thermal wind shear.
The increase in TACC with wind forcing continues across
the extreme range considered here, which reaches a
peak wind stress of 1.0 N m22, compared to the basic
state value of 0.2 N m22. The increase in transport does
not remain linear with wind stress, although it is close to
this limit across many of the experiments. The reader
should note that no error bars are shown on the D 5 28
line of Fig. 3a as the variability is so low that they would
be smaller than the plotted symbol in most cases.
When the grid spacing is refined to ½8 (red line), and

again to 1/68 (green line), the model behaves like the
high-resolution numerical models discussed in section 1.
In other words, TACC ‘‘saturates’’ at some finite value of
wind stress and ceases to increase with further increases
in wind stress. Indeed, for the first time our 1/68 exper-
iments demonstrate that such saturation may take
place with no wind at all, since the increase in vari-
ability effectively makes the green line on Fig. 3a in-
distinguishable from flat. The extreme range of wind
forcing considered in the experiments presented here

FIG. 3. Sensitivity of the circumpolar transport to (a) the wind stress and (b) the diapycnal diffusivity. The ‘‘error
bars’’ are two standard deviations around the long-term mean, calculated from instantaneous monthly values
throughout the averaging period. The 28 (blue) experiments are averaged over 1000 years, the ½8 (red) experiments
over 100 years, and the 1/68 (green) experiments over 10 years.

2 For reasons of numerical stability it was found to be easier to
initialize the 1/68 diapycnal diffusivity experiments from the 48 ex-
periments used to initialize the 28 experiments. In some cases, this
leads to a noticeable lag between the 1/68 basic state and the 12
experiments that make up the rest of the 1/68 diapycnal diffusivity
suite.
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explicit eddies                                                                                     

parameterised eddies
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• Ocean models give very different sensitivities to
      forcing with parameterised and explicit eddies  

•  GEOMETRIC 
         - conserves momentum and energy by construction
         - solve prognostic equation for eddy energy
         - remaining unconstrained parameters are dimensionless
         - physical interpretation via stability properties of flow

•  Implementation  
        - eddy energy budget
        - otherwise simple modification to Gent and McWilliams www.marshallocean.net

•  Proofs of concept  
        - Eady growth rate
        - eddy diffusivity 
        - eddy saturation 


