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Geostrophic turbulence is non-dissipitive

• Winds provide an energy source to the geotrophic circulation and 
eddy field

• So an energy sink is needed:

- Bottom friction

- Top friction

- Loss of balance

Observations show near-inertial 
motion superposed on geostrophic 
currents

Want to understand how they 
might help damp the geostrophic 
flow
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Figure 1: Drifter tracks exhibiting a near-inertial motion. Figure adapted from D’Asaro et al.

(1995).

1.2 Near-inertial waves

The focus of this study is near-inertial waves (NIWs). NIWs are characterized, according to

Alford et al. (2016), by a frequency between f and 1.2 f and by a characteristic scale of 10-100

km. Figure 1 shows drifter trajectories in a NIWs field, following the passage a storm. The

tracks describe rotational motions, advected over the domain by a slower current. This figure

shows with clarity that waves are superposed over the mesoscale oceanic circulation.

According to many observational studies, there is a tendency for energy to pile up in the

near-inertial (NI) band of the wave spectrum (e.g. figure 2). A few mechanisms account for

the accumulation of energy in the NI band: interactions between geostrophic currents and the

bottom topography (Nikurashin and Ferrari, 2010), resonant interactions with tides at specific

latitudes (Young et al., 2008), nonlinear interactions between geostrophic currents and NIWs

(Gertz and Straub, 2009; Xie and Vanneste, 2015), and most importantly, forcing by wind.

Fluctuations in time and space of the wind forcing on the water surface generate NIWs.

Resonance with f k̂ ⇥u in the momentum equation is one reason why NIWs are dominant

in the wave spectrum. Many wind events contain energy at the resonant frequency, namely

hurricanes, storms and even diurnal breezes near land at 30° latitude. These forcings are

usually of large spatial extent, e.g. synoptic scale of O(1000 km), whereas the ocean mesoscale

is much smaller with O(30 km).

1.3 Scale reduction and capture by anti-cyclones

Noticethat NIWsareforced at largescale, whereasobservationsshow they exist predominantly

at smaller scales. There has to be mechanisms that stretch, refract, break apart and globally re-

duce NIWsscale. The planetary vorticity gradient (β-effect) and the the mesoscale background

D’Asaro 1995
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NB: The NIWs are present mainly 
because of external forcing

Geostrophic turbulence helps to 
cascade NI wave energy forward

As they cascade forward, NI waves can 
extract energy from the geostrophic 
flow



SLOB 
(and other messy jargon)

• Stimulated Loss Of Balance (Xie and Vanneste 2015, Wagner and Young 

2016)

• Direct extraction vs Stimulated Imbalance (Barkan et al. 2017)

• Advective Sink (some of my papers)

Comment:  unbalanced motion is predominant at small spatial scales. Much 
literature assumes balance-to-unbalanced transfers are also submesoscale (e.g., 

Buhler and McIntyre 2003,  Guisouard and Thomas 2015).  For these studies, the WKB 
approximation is often useful.  My focus is on mesoscale transfers.

Stimulation refers to external forcing of near-inertial motion
(or to NI motion present at significant levels in an IVP
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The solut ion can writ ten in complex form as131

u + iv = M z e− i f 0 t (2.3)

for some complex amplitude M (x, y, z). Here we follow YBJ in writ ing this amplitude as132

a z-derivat ive so that the vert ical velocity, deduced from the incompressibility condit ion133

(2.1d), takes the simple form134

w = −M se− i f 0 t + c.c., (2.4)

where s = x + iy, ∂s = (∂x − i∂y )/ 2, and c.c. denotes the complex conjugate of the135

preceding term. The posit ion x = (x, y, z) of fluid part icles in the inert ial field (2.3)–136

(2.4) can be obtained by integrat ion. If this posit ion is writ ten as137

x = X + ξ, (2.5)

the displacement ξ = (ξ,η, ζ) sat isfies138

ξ + iη = χz e− i f 0 t and ζ = − χse− i f 0 t + c.c. (2.6)

where χ = iM / f 0 in the linear approximat ion. The mean posit ion X can be regarded139

as an integrat ion constant ident ifying the fluid part icle, and the displacement ξ and140

amplitude χ can be thought of as funct ions of X .141

For NIWs propagat ing in a flow, the descript ion leading to (2.6) is overly simplified.142

However, it can be extended to capture the two-way interact ions between the NIWs143

and the flow: this is achieved by regarding X as a suitably defined, t ime-dependent144

Lagrangian-mean posit ion (in fact , a mean map X (a, t) mapping the part icle labelled by145

a to its mean posit ion at t ime t), and by taking the amplitude χ(X , t) to be a funct ion146

of both t ime and mean posit ion in typical GLM fashion (e.g. Bühler 2009). The main147

achievement of this paper is the derivat ion of equat ions governing the joint evolut ion148

of the NIW amplitude χ and of the mean map X (a, t) or, rather, of the corresponding149

Lagrangian-mean velocity.150

We leave the details of this derivat ion for the next sect ion and present here the final151

equations. These are part icularly simple when the Lagrangian-mean flow is assumed to152

be quasi-geostrophic and hence derived from a streamfunct ion ψ according to (ūL , w̄L ) =153

(∇ ⊥ψ, 0), with ∇ ⊥ = (− ∂y , ∂x ). In this approximation, and using x rather than X to154

denote the independent spat ial variables (the mean posit ions), the coupled model takes155

the form156

χzzt + (∂(ψ,χz ))z + iβyχzz

+
i

2

N 2

f 0

+ ψzz ∇ 2χ + ∇ 2ψχzz − 2∇ ψz ·∇ χz = 0, (2.7a)

qt + ∂(ψ, q) = 0, (2.7b)

where ∂(·, ·) denotes the two-dimensional Jacobian (with ∂(f , g) = f x gy − gx f y ), and N157

is the Brunt–Väis̈alä frequency which generally depends on z. The first equat ion can be158

recognised as a version of the YBJ model, specifically their complete Eq. (3.2) rather159

than the simplified model given by their Eq. (1.2). It is supplemented by the boundary160

condit ions at the top and bottom boundaries z = z± ,161

χ = const± at z = z± , (2.8)

ensuring a vanishing NIW vert ical velocity there. The second equat ion is the material162

conservat ion of the quasi-geostrophic potent ial vort icity (QGPV) q. This is related to163
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the streamfunct ion ψ and to χ through164

q = βy + ∆ψ+
if 0

2
∂(χ∗z ,χz ) + f 0G(χ∗ ,χ ), (2.9)

where165

∆ = ∇ 2 + ∂z f 2
0 / N 2∂z , (2.10)

is the familiar quasi-geostrophic potent ial vort icity operator,166

G(χ∗ , χ) =
1

4
2|∇ χz |2 − χzz∇

2χ∗ − χ∗zz∇
2χ , (2.11)

and ∗ denotes complex conjugate. In a familiar way, (2.9) should be interpreted as an167

inversion equat ion which relates the streamfunct ion ψ and hence the advect ing velocity168

∇ ⊥ψ to the dynamical variables, here q and χ . This inversion necessitates boundary169

condit ions. In the vert ical they are provided by the advect ion of the Lagrangian-mean170

buoyancy at the top and bot tom boundaries, that is,171

∂tθ
± + ∂(ψ± ,θ± ) = 0, where ψ± = ψ|z= z± and θ± = f 0 ψz |z= z± . (2.12)

For horizontally periodic or unbounded domains, as assumed in what follows, Eqs.172

(2.7)–(2.12) define the new model completely. The YBJ equat ion (2.7a) describes the173

weak dispersion that arisesfrom a finitehorizontal scale(through theterm iN 2∇ 2χ / (2f 0))174

and as well the various effects that the mean flow has on the NIWs: advect ion (term175

(∂(ψ, χz ))z ), and refract ion by the mean vort icity (term i∇ 2ψχzz / 2) and by vert ical176

shear (term − i∇ ψz · ∇ χz ). The simple QGPV equation (2.7b) governs the mean flow.177

Here the effect of the NIWs is a modificat ion of the relat ion between ψ and q by the178

quadrat ic wave terms in (2.9). This structure is expected from GLM theory which inter-179

prets the quadrat ic wave terms as a potent ial vort icity contribut ion stemming from the180

wave pseudomomentum (Bühler & McIntyre 1998; Bühler 2009; Salmon 2013).181

2.2. Some properties182

An important feature of the coupled model is its conservat ion laws. The model conserves183

the total energy184

H =
1

2
|∇ ψ|2 +

f 2
0

N 2
ψ2

z + f 0βy|χz |2 +
N 2

2
|∇ χ |

2
dx , (2.13)

and the wave act ion185

A =
f 0

2
|χz |2 dx . (2.14)

The wave act ion can be recognised as the kinet ic energy of the NIWs divided by f 0.186

Its conservat ion does not follow from an analogous conservat ion in the hydrostat ic–187

Boussinesq equat ions; rather it stems from an adiabat ic invariance associated with the188

large t ime-scale separat ion between the fast oscillat ions of the NIWs and the slow evo-189

lut ion of their amplitude and of the mean flow (cf. Cotter & Reich 2004). Since, in the190

NIW limit , the leading-order wave energy is ent irely kinet ic and their frequency is f 0,191

the familiar form of wave act ion, namely the rat io of wave energy to frequency, reduces192

to (2.14). The conservat ion of H is direct ly inherited from the energy conservat ion for193

the hydrostat ic–Boussinesq equat ions. The first two terms in (2.13) are recognised as the194

quasi-geostrophic kinet ic and potent ial energy associated with the mean flow. The third195

term is associated with the β-effect . The fourth and final term can be interpreted as the196

t ime-averaged potent ial energy of the NIWs; indeed, using the vert ical displacement in197
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Separates flow into slow and fast modes
(without assuming WKB)

Conclude that a forward cascade 
of near-inertial energy implies a 
sink of geostrophic energy

• Fast KE and total E are both  
conserved

• A forward transfer of NIWs 
implies an increase in fast PE

• But since fast KE is conserved, 
this implies loss of balance
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Separates flow into slow and fast modes
(without assuming WKB)

Conclude that a forward cascade 
of near-inertial energy implies a 
sink of geostrophic energy

• Fast KE and total E are both  
conserved

• A forward transfer of NIWs 
implies an increase in fast PE

• But since fast KE is conserved, 
this implies loss of balance

Wagner and Young (2016) have a similar model, 
but also include frequencies near 2f



A Ke-only model of SLOB  (Gertz and S  2008)

(NB:  The Xie and Vanneste mechanism relies on PE)

Unstratified ocean double gyre problem

Hydrostatic dynamics (equivalently, 
this is an unstratified version of the 
primitive eqns)

Comments: 
• the linear z-dependent modes are 

inertial oscillations
• their Reynolds stresses feed back 

onto the depth averaged flow
• This is significant only if the NIWs 

are externally forced

High frequency forcing applied to 
excite z-dependent near-inertial 
oscillations



A Ke-only model of SLOB  (Gertz and S  2008)

(N.B.  The Xie and Vanneste mechanism relies on PE)

Unstratified ocean double gyre problem

High frequency forcing applied to 
excite z-dependent near-inertial 
oscillations

Hydrostatic dynamics (equivalently, 
this is an unstratified version of the 
primitive eqns)

Comments: 
• the linear z-dependent modes are 

inertial oscillations
• their Reynolds stresses feed back 

onto the depth averaged flow
• This is significant only if the NIWs 

are externally forced



Time series  showing 
geostrophic and near-inertial 
energy with and without 
external forcing of the near-
inertial modes

Transfer spectra as a function of 
horizontal wavenumber.  Negative 
values imply geostrophic-to-near-
inertial energy transfers

Point:  near-inertial modes can feed back on to the balanced flow. But this 
feedback is minimal unless the near-inertial modes are externally forced



More recent work (with S Taylor)

Primitive Eqn eddy-permitting climate model (POP)

Zonally periodic setting  with a large-scale meridional ridge

Forcing = sum of  
i)   a steady zonal wind stress (to force a geostrophic flow)
ii)  a large-scale high frequency wind stress (to excite waves)

Dissipation by bottom drag and hyper-viscosity

Base state stratification consistent with observations

About four grid points per Rossby radius and 30 vertical levels
(sub-mesoscale permitting?)



Base state is a nearly geostrophic 
flow is a S. Hemisphere channel 
flow in primitive eqn model (POP) 
forced by steady winds

We considered 4 different base states 
(varying the amplitude of th steady 
forcing)  

And several levels of high frequency 
forcing for each base state

Snapshot of high high-passed flow 
(shown is surface speed in cm/s)



Influence of high-passed Reynolds 
stresses on low-passed KE

Serves mainly to redistribute KE 
vertically

But also comprises a net sink 
(centered in the ocean mesoscale)



Stimulated Imbalance vs Direct Extraction
(jargon from Barkan et al.)

KE frequency spectra for 
different base state forcing 
levels

High freq defined as 
periods greater than 2 days

Used different cutoffs  to 
define the low-pass fields:

2,4,8,16,32,64,128 days

Frequencies from which ‘balanced’ KE is extracted



Stimulated Imbalance vs Direct Extraction
(Barkan et al.)

High freq defined as periods greater than 2 days

Used different cutoffs  to define the low-pass 
fields:    2,4,8,16,32,64,128 days

Surface transfer spectra. 
Different curves show 
energy extracted from low-
passed freqs corresponding 
to periods of 2-4, 4-8, 8-16, 
16,32,32-64, 64-128 days

Shown are results for the 
medium  base state



Potential energy and V-WW transfers

For low Ro, Fr (Bartello 95)

V-WW is small
W-VW  forward cascade of wave E

The Reynolds stress transfers we consider 
are low-to-high freq KE transfers.

If they can be thought of as (mainly) part of 
an overall V-WW transfer then…

we should expect low-to-high freq PE 
transfers 

ie, because the ratio of PE to KE in the 
V modes is given by L/L_d

Shown are total, PE and KE sinks of 
low-passed energy for the strong and 
medium base states (as a function of 
the high freq forcing amplitude)
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we should expect low-to-high freq PE 
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V modes is given by L/L_d

Shown are total, PE and KE sinks of 
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medium base states (as a function of 
the high freq forcing amplitude)



My view of SLOB 

• Balanced flows are weakly unstable to unbalanced motion
- How weak depends (loosely) on the base state Rossby number

• At equilibrium, balanced-to-unbalanced transfer depends on
- The base state Rossby number and the saturation value of the unbalanced 

modes

- For a given base state, more NI forcing implies higher saturation levels (and 
hence more transfer)



Conclusions (and short animation of surface current speed)

• Dominant sink of balanced flow probably bottom drag
• But some form of SLOB merits an honorable mention
• More work needed to determine which SLOB is the biggest
• NOTE: Forced NI motion also has other more mundane, but perhaps more 

important consequences



Changes in stratification due to application of NI 
forcing in the different cases



Stimulated Imbalance vs Direct Extraction
(Barkan et al.)

High freq defined as periods greater than 2 days

Used different cutoffs  to define the low-pass 
fields:    2,4,8,16,32,64,128 days

Left: vertical structure of 
the `advective sink’ as a 
function of the cutoff 
defining the low passed 
flow

Right:  Surface transfer 
spectra

Shown are results for the 
strong base state



Stimulated Imbalance vs Direct Extraction
(Barkan et al.)

Portion of surface transfer spectrum coming from 2-4, 4-8, 8-
16, 16-32, 32-64, and 64-128 day periods 


