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Outline
• On the direction of lateral stirring in the ocean and 

the physical origin of the “neutrality principle” 

• Neutral-PV density surfaces and Lorenz reference 
density 

• Is McDougall’s criticism of material surfaces valid?  

• Why do we think we need rotated diffusion?
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Motion appears to be quasi two-dimensional when 
written in isentropic coordinates z=𝜁(x,y,η,t) if diabatic 

effects are negligible 

Π = ϖ a i∇η
ρ

Ertel Potential Vorticity key dynamical tracer conserved along 
isentropic surfaces in absence of viscous and diabatic effects

Isentropic surfaces are generally regarded as 
associated with observed strong lateral stirring
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Isentropic 
surfaces

Potential Density 
surfaces

Simple Fluid: S(θ)-ocean or Moist Atmosphere

Complex Fluid: Thermobaric ocean without S(θ) 
relationship or Moist Atmosphere 

Potential Density 
surfaces

Isentropic 
surfaces
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From isentropic to Isopycnal Surfaces



γ (S,θ ) = constant

Definition of “Isentropic” Surfaces

Definition of Potential Density Surfaces

ρ = ρ(S,θ , p) = ρ*(γ ,ξ, p)

ρ*(γ ,ξ, pr (γ )) = constant

ξ(S,θ)=“Spiciness” Variable ξ(S,θ)=θ for concreteness

In-Situ Density

Unavoidable dependence on spiciness is what causes 
the difficulties -> Minimise this dependence
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Implication for the Neutral Vector
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∂(γ ,ρ)
∂(S,θ )

≈ 0

γ L (S,θ ) = ρ(S,θ , pr (S,θ )) pr (S,θ )− p ≪1

Minimising mismatch between isentropic and potential 
density surfaces equivalent to maximising neutrality

Solution is well known locally-referenced potential density

Note that solution does not need to look like in-situ 
density at all
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Energy cost of  
adiabatic and 

isohaline parcel 
exchanges
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Energy cost of Adiabatic and Isohaline Parcels 
exchange (Haine and Marshall, 1998; Olbers et al. 

2012, Vallis 2006)

Iso-γ Temperature and 
Pressure differences

Maximising neutrality = Minimising |ΔE| for finite Δp Δθ 

Similar to McDougall (1987) neutrality
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Potential Vorticity

Maximising Neutrality minimises thermobaric production of 
Potential Vorticity, makes it as Lagrangian as possible

Similarities with McDougall (1995)



Neutral PV Surfaces 

Construct material density variables that maximises 
neutrality, minimises the absolute value of the energy 

cost of adiabatic and isohaline parcel exchanges, and 
minimises the thermobaric production of Potential 

Vorticity  

Support Eden and Willebrand (1999)’s approach to 
constructing neutral surfaces. Unlike EW99’s construction in 

physical space, present construction can be done in 
thermodynamic space
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θ2 > θ1
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Equator

Actual State Reference State

Lorenz’s Reference State of Minimum Potential Energy 
is obtained from adiabatic rearrangement of mass 

= Measure of “heat” of the fluid. 
Can only evolve as a the result of diabatic processes
First used by Winters et al. (1995) to diagnose mixing
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Implicit Solution of 
LNB equation

Tailleux (2013, JFM)



Neutral density strongly 
correlated to thermodynamic 

neutral density almost 
everywhere

Differences between 
two variables less than 

0.01 kg/m3 almost 
everywhere

−10 −8 −6 −4 −2 0 2 4
0

0.5

1

1.5

2

2.5

3 x 106

Log10(Abs(Differences with Neutral Density))

co
un

t



Latitude

D
e

p
th

 (
m

)

JMD97 Neutral Density Atlantic 30 W

 

 

−80 −60 −40 −20 0 20 40 60 80
−6000

−5000

−4000

−3000

−2000

−1000

0

23

24

25

26

27

28

29

Latitude

D
e

p
th

 (
m

)

Thermodynamic Neutral Density 30 W

 

 

−80 −60 −40 −20 0 20 40 60 80
−6000

−5000

−4000

−3000

−2000

−1000

0

23

24

25

26

27

28

29

Jackett & McDougall (1997) 
Neutral Density 

Atlantic WOCE 30W

Thermodynamic 
Neutral Density 
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f(pr(S,θ)) constructed to minimise difference with Jackett 
and McDougall (1997) neutral density on WOCE dataset 



Differences in (θ,S) 
space usually less 
than 0.01 kg.m-3



Neutrality performances 



McDougall’s criticism of purely 
material density variables

• North-South Density Differences of outcropping 
isopycnal surfaces 

• Representation of thermobaric effects 

• Fictitious diapycnal mixing 



North-South In-Situ Density differences

McDougall & Jackett (2005) assert that material 
density variables cannot exhibit North-South density 

differences, unlike γn or Pached Potential Density

γn =constant

ρS ρN

ρN − ρS = ρ*(γ ,ξN ,0)− ρ*(γ ,ξS ,0) ≠ 0

p=0

FALSE: Non-zero density difference controlled by 
North-South contrast in spiciness

Low 
spice

High 
spice



North-South In-Situ Density differences (ct’d)

Important to test “adiabatic” theories of the Atlantic Meridional 
Overturning Circulation (e.g., Wolfe and Cessi, 2011)

Different constructions will a priori give more importance to 
Southern Ocean compared to interior diapycnal mixing to 

balance the northern light-to-dense water mass conversion. 
Maximising neutrality = Minimising interior mixing?

Cooling



Representation of Thermobaric Effects 

McDougall et al. (2017) assert that material functions 
cannot represent thermobaric effects, unlike γn
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True for standard potential 
density variables
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Not true for Lorenz Reference Density ρLZ (S,θ ) = ρ(S,θ , pr (S,θ ))



Thermobaric 
“Diffusion”



McDougall and Jackett (2005) 
argue that departure from 
neutrality induces fictitious 

mixing

K fictitious = Ki sin
2(∇γ ,N)

Related to so-called Veronis 
effect, responsible for 
spurious upwelling in 

western boundary currents 
of early OGCMs with no GM, 
mixing horizontally/vertically



−Fθ =ψ eddy ×∇θ + Ki I− dd
T( )+ KTγ dd

T⎡⎣ ⎤⎦∇θ +Gaugeθ

−FS =ψ eddy ×∇S + Ki I− dd
T( )+ KSγ dd

T⎡⎣ ⎤⎦∇S +GaugeS

The Inversion Problem

Mathematically, the mesoscale eddy potential, and all three 
diffusion coefficients can be determined uniquely from 

knowledge of the fluxes and of the Gauge terms
Gauge terms can be obtained from solving two global 
elliptic problems, e.g., Roberts and Marshall (2000), or 

following Eden et al. (2007)



−Fθ =ψ eddy ×∇θ + Ki I− dd
T( )+ KTγ dd

T⎡⎣ ⎤⎦∇θ +Gaugeθ

−FS =ψ eddy ×∇S + Ki I− dd
T( )+ KSγ dd

T⎡⎣ ⎤⎦∇S +GaugeS

The Inversion Problem (ct’d)

A priori, inversion can be done for any arbitrary direction, but 
in general requires different diffusivities for heat and salt. 
Imposing equal T/S diffusivities makes problem ill-posed.

Inverting the problem yields mesoscale eddy velocity 
potential with more terms than in classical GM, e.g., Eden 

et al. (2007)
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The Inversion Problem for diffusivities

Production of Temperature Variance

Production of Salinity Variance

Production of T/S Covariance



Rotated Diffusion Tensors
• Rotated diffusion tensors do not require the use of 

neutral directions. However, diffusivities used depend on 
the choice of isopycnal/diapycnal direction, and a priori 
must be different for T & S.  

• A priori, there is no harm in mixing horizontally/vertically 
if done right. Rotated diffusion is therefore  not a solution 
to the Veronis effect. Supported by Boning et al. (1995), 
Lazar et al. (1999), Huck et al. (1999) suggesting that it 
is GM that cures Veronis effect. 



Conclusions
• Neutral-PV surfaces defined to be material surfaces that 

minimises mismatch between isentropic and potential density 
surfaces. Clarifies physics of the “neutrality principle” and of 
“locally-referenced potential density” 

• Lorenz reference density naturally appears to be the best 
neutral-PV surface constructed so far 

• McDougall’s criticism against material density variables does 
not appear to be valid 

• A priori no requirement to use neutral directions in rotated 
diffusion tensors. Mixing horizontally/vertically is fine if done 
properly. Rotated diffusion cannot cure Veronis effect. 


