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The climate Is a forced and dissipative system featuring variability on a vast range of aX

spatial and temporal scales. Convection acts on a lesser time scale with respect to E = F X (X ) + LIJX (X ) Y)
synoptic scale weather phenomena, and they interact with each other through the dY

exchange of energy, which is mathematically represented by the coupling. —F (Y) + Y (X Y)
In climate models Is essential to parameterize the coupling In order to describe the dt Y Y\

effect of the unresolved variables on the resolved ones.
The approach [1] engaged In this research [2] is based on Ruelle response theory [3]

g e . . . dX
and consists In rethinking the coupling as a perturbation of an otherwise autonomous R FX(X(t)) 4 D(X) 1 S(X) 1+ M(X)

system and calculating its parameterization up to the second order as a sum of three dt
terms: a deterministic field, a stochastic forcing and a memory term.

Application on modified Lorenz 96 model
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o Lorenz 96 [4] Is a dynamical system that shows chaotic behaviour on two different time scales,
a feature which makes it suitable for studies about nonlinearity in geosciences; it was built as a
02 simplified model of the atmosphere and it could work as a starting benchmark for weather and
climate investigations.
0 - : : : - - ” he X variables represent slow dynamics which change on synoptic scales, while Y variables
' | | X portray fast, convection related dynamics.
Here we compare the results obtained applying Wouters-Lucarini's and Wilks’'s [5]
>0 | | parameterizations to the uncoupled version of Lorenz 96 model, used as a reference to assess
1st order parameterization the Improvement obtained.
18T ——2nd order parameterization| |
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16 | Wilks parameterization As It can be seen from the first plot, Wouters-Lucarini's parameterization reproduces the
distribution of the X as efficiently as the Wilks's approach, while in the case of the second
+— 14 r . . : . .
C centered moment, plotted with respect to changes in coupling strength, the fair behaviour of
E 12 1 - our method Is outmatched by the latter.
E 10l . his Is due to the empirical nature of Wilks’'s parameterization, which provides an accurate
= approximation of a dynamical system given a particular set of parameters like time scale
; i \ | separation, relative amplitude of the fluctuation of the variables and coupling strength.
1 gL
Nevertheless, this represents the most restrictive limitation of this kind of parameterization:
every single slight change in these parameters requires a new application of the method, with
2 - new simulations and computations.
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The WL parameterization guarantees a complete scale adaptivity: the calculation of the three -,
terms must be performed only once, since it is possible to get new values for different cases n 0.08
through simple transformations. <
. o | . . 2 0.06
In the last figure we show the distribution of the slow variables obtained with completely =
different time scale separation, relative magnitude of the variables and coupling strength. 8
While for the empirical approach a whole new computation was necessary, Wouters-Lucarini's = °%|
method was applied straightly from the standard case above showed, obtaining the same
result of the direct application and therefore demonstrating its flexibility and reliability. 0.02 |
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