Area T: Turbulence and boundary layer
In Area T oceanographers and meteorologists work on small-scale turbulent and boundary layer processes in ocean and atmosphere. The term boundary layer describes the areas at the top or bottom in the ocean or atmosphere. The focus in Area T is on the boundary layer processes at the ocean's surface and bottom boundaries.
Objectives
Combining experiments with simulations
Scientists in Area T use experiments as well as simulations to investigate the ocean and atmosphere. High-resolution measurements are used e.g. to construct horizontal and vertical wavenumber power spectra or to construct energetically consistent parameterizations of energy transfers. Furthermore, observations with high-resolution data and simulations help assessing the mixing processes active in a descending gravity plume.
Specific research questions in Area T are:
- How to quantify and parameterise stratified turbulence in the atmosphere?
- What are processes, energy transfers and interactions between small-scale turbulence, gravity waves and eddies in the surface and bottom boundary layers of the ocean?
Publications
Burchard, H., Basdurak, N. B., Gräwe, U., Knoll, M., Mohrholz, V. & Müller, S. (2017). Salinity inversions in the thermocline under upwelling favorable winds. Geophys. Res. Lett., 44, doi:10.1002/2016GL072101.
Becker, E. and Vadas, S. L. (2018). Secondary Gravity Waves in the Winter Mesosphere: Results From a High‐Resolution Global Circulation Model. J. Geophys. Res.-Atmos., 123(5), 2605-2627, https://doi.org/10.1002/2017JD027460.
North, R. P., Jochumsen, K. & Moritz, M. (2018). Entrainment and Energy Transfer Variability Along the Descending Path of the Denmark Strait Overflow Plume. J. Geophys. Res.-Oceans, 123(4), 2795-2807, doi: https://doi.org/10.1002/2018JC013821.
Schaefer-Rolffs, U. and Becker, E. (2018). Scale-invariant Formulation of Momentum Diffusion for High-Resolution Atmospheric Circulation Models , Mon. Weather Rev., 146, 1045-1062, doi:10.1175/MWR-D-17-0216.1 .
Vadas, S. L., Zhao, J., Chu, X. & E. Becker (2018). The excitation of secondary gravity waves from local body forces: Theory and observation. J. Geophys. Res.-Atmos., 123(17), 9296-9325, doi: https://doi.org/10.1029/2017JD027970.
MacCready, P., Geyer, W.R. & Burchard, H. (2018).Estuarine exchange flow is related to mixing through the salinity variance budget. J. Phys. Oceanogr., 48, 1375-1384, https://doi.org/10.1175/JPO-D-17-0266.1 .
Burchard, H., Bolding, K., Feistel, R., Gräwe, U., MacCready, P., Klingbeil, K., Mohrholz, V., Umlauf, L., & van der Lee, E. M. , (2018). The Knudsen theorem and the Total Exchange Flow analysis framework applied to the Baltic Sea, Prog. Oceanogr., 165, 268-286, doi: https://doi.org/10.1016/j.pocean.2018.04.004.
Schaefer-Rolffs, U. (2018). A comparison of different solutions for the Dynamic Smagorinsky Model applied in a GCM. Meteor. Z., 27, 249–261, doi: 10.1127/metz/2018/0885.
Schaefer-Rolffs, U. (2018). The scale invariance criterion for geophysical fluids. Eur. J. Mech. B-Fluid, Vol. 74, 92-98, https://doi.org/10.1016/j.euromechflu.2018.11.005.
Liang, X., and Losch, M. (2018). On the effects of increased vertical mixing on the Arctic Ocean and sea ice. J. Geophys. Res.-Oceans.
, 123, 9266–9282, doi: doi.org/10.1029/2018JC014303.