Area W: Wave processes
Area W focuses on gravity waves in ocean and atmosphere. Gravity waves occur within a fluid or at the interface between two media of different density when the force of gravity or buoyancy tries to restore equilibrium. They exist for example at the surface of the ocean or even within the ocean or atmosphere if the fluid is stratified in density. These latter waves are called internal gravity waves. The projects in area W investigate internal wave processes the ocean and extend new ideas to the atmosphere.
Objectives
Further investigate the ocean, new ideas for the atmosphere
In two projects our scientists will focus on the ocean, i.a. quantifying the generation and propagation of internal waves and extending as well as validating gravity wave closures for the ocean. A third project explores a new parameterisation concepts for gravity waves in the atmosphere.
Specific research questions in Area W are:
- What are dominant mechanisms and processes for gravity waves in the atmosphere and how can we better parameterise them?
- How do gravity waves propagate and dissipate in the ocean and how can we better parameterise the wave effects on the ocean circulation?
Publications
Eden, C. & Olbers, D. (2017). A closure for internal wave-mean flow interaction. Part B: Wave drag. J. Phys. Oceanogr., doi: https://doi.org/10.1175/JPO-D-16-0056.1.
Olbers, D. & Eden, C. (2017). A closure for internal wave-mean flow interaction. Part A: Energy conversion.J. Phys. Oceanogr., doi.org/10.1175/JPO-D-16-0054.1.
Eden, C. & Olbers, D. (2017). A closure for eddy-mean flow effects based on the Rossby wave energy equation. Ocean Model., 114, 59-71, doi: https://doi.org/10.1016/j.ocemod.2017.04.005.
Pollmann, F., Eden, C. & Olbers, D. (2017). Evaluating the Global Internal Wave Model IDEMIX Using Finestructure Methods.Am. Met. Soc., doi: 10.1175/JPO-D-16-0204.1.
Köhler, J., Völker, G.S. & Walter, M., (2018). Response of the Internal Wave Field to Remote Wind Forcing by Tropical Cyclones, J. Phys. Oceanogr., 48, 317-328, https://doi.org/10.1175/JPO-D-17-0112.1.
Chouksey, M., Eden, C., & Brüggemann, N. (2018). Internal gravity wave emission in different dynamical regimes. J. Phys. Oceanogr., 48(8), 1709-1730, doi: https://doi.org/10.1175/JPO-D-17-0158.1.
Olbers, D., Eden, C., Becker, E., Pollmann, F., & Jungclaus, J. (2019). The IDEMIX Model: Parameterization of Internal Gravity Waves for Circulation Models of Ocean and Atmosphere. In Energy Transfers in Atmosphere and Ocean (pp. 87-125). Springer, Cham., doi: https://doi.org/10.1007/978-3-030-05704-6_3.
Mertens, C., Köhler, J., Walter, M., von Storch, J. S., & Rhein, M. (2019). Observations and Models of Low-Mode Internal Waves in the Ocean. In Energy Transfers in Atmosphere and Ocean (pp. 127-143). Springer, Cham., doi: https://doi.org/10.1007/978-3-030-05704-6_4.
Eden, C., Chouksey, M., & Olbers, D. (2019). Mixed Rossby–gravity wave–wave interactions. J. Phys. Oceanogr., 49(1), 291-308.
Pollmann, F., J. Nycander, C. Eden and D. Olbers (2019). Resolving the horizontal direction of internal tide generation. J. Fluid Mech., Vol. 864, pp. 381-407, doi: https://doi.org/10.1017/jfm.2019.9.