Reports Area S

The Earth’s energy budget and other funny aspects of the thermodynamics of the climate system

State-of-the-art climate models still struggle to reproduce a reasonably energetically consistent system, even though outstanding improvements have been achieved in the recent past.

Valerio Lembo, Postdoc in S1

The idea of this subproject is assessing the impact of introducing new numerical schemes and physical parametrizations developed in the TRR181 for the energy closure of state-of-the-art climate models. We provide diagnostic tools that allow for evaluation and intercomparison of climate models, starting from their outputted datasets.

It might sound trivial, expecting that the climate system, if in steady state, is also in thermodynamic equilibrium. This is at least what our studies of classical thermodynamics suggest. The problem is that the system constantly exchanges energy with its exterior, i.e. the outer space, and within its interior. In steady state conditions, the net exchange of energy with the exterior has to be null. In other words, the climate system is in thermodynamic equilibrium, once we averaged out the modulation of the solar energy input to an appropriately long timescale and all the energy exchanges occurring in its interior, shaping the solar “reflection” and the thermal energy output. This is a clear example of what is called a “non-equilibrium dissipative steady state thermodynamical system”.

State-of-the-art climate models still struggle to reproduce a reasonably energetically consistent system, even though outstanding improvements have been achieved in the recent past. This points to the very basic reasons for climate modeling, on one hand reflecting the lack of understanding of some processes involving energy exchanges and the limits of the discretization/truncation of the real world in finite dimension models, on the other hand preventing us from correctly evaluating the impact of the various forcings for reconstructed and projected climate change.

As TRR181, we are participating to the community effort called “ESMValTool”, whose aim is providing a set of standardized diagnostics for the evaluation of state-of-the-art and forthcoming multi-model ensembles. In our diagnostics, we try to address specifically the Earth’s energy budget and its atmospheric and oceanic components, and the atmospheric energy exchanges, including the Lorenz Energy Cycle, which describes the energy exchanges in the extratropical synoptic eddies. We also provide an estimate of the atmospheric material entropy production, i.e. the entropy production through irreversible processes, and the water mass budget, which is known to be one of the main sources of uncertainty for the modeled energy budget.

The diagnostic tool is currently being ported from version 1 to version 2 of ESMValTool, and will be hopefully soon publicly released. A report for the ESMValTool version 2 is being written, with contributions by all groups in the community, and another paper, focused on potential applications of the tool in various fields of climate science, will be submitted.

Metrics and Diagnostics for model improvements

The proper protocol and experiment setup for numerical experiments is crucial.

Nikolay Koldunov, Postdoc in S1

I am Nikolay Koldunov, Post Doc at MARUM and Alfred Wegener Institute. Since October I begin to work at Research Project S1: Diagnosis and Metrics in Climate Models. The main aim of the project is to integrate and synthesize work done in other parts of the TRR181. In particular we will provide metrics and diagnostics to help access the impact of model improvements suggested by TRR181 on quality of the climate models. One of the main challenges is to create model diagnostics that would not only quantify improvements, but also allow to clearly identify the cause of changes in model behavior. In this respect the proper protocol and experiment setup for numerical experiments is crucial and its development will be important part of my work. The resulting diagnostics will become available for the wider research community through the ESMValTool, that is going to be one of the main instruments of model analysis for the CMIP6 project.

A Memory of Pre-Pandemic Times and a Glimpse at the hopefully soon-to-be Future: My Visit at MIT and the AGU Fall Meeting 2021

With two successful talks, one on my research at the CRC181 and one on my science policy activities, I am more than happy with the received exposure and appreciation of our work.

Georg Sebastian Voelker, Postdoc in W1, S2

Having been in the home office for a long time during the last two years I am sure everyone wonders: Remember how things were before the virus hit? And how things will be afterwards? I was asking myself the very same questions while having a travel grant available I had won mid 2020 from the DFG research unit MS-GWaves which was still sitting in the accounts waiting to be used. My visit had been planned for a long time but had also been delayed by the pandemic. So when the US started opening up to foreign visitors in late summer 2021 I decided to try to move forward with the plan we had been setting aside for so long. And despite the restrictions and insecurities linked to long distance travel I should very soon be rewarded. On November 8 I boarded an airplane to Cambridge, Massachusetts to visit the long research partner of out group, Prof. Triantaphyllos Akylas at the Massachusetts Institute of Technology.

Our former and ongoing research project with T. R. Akylas is concerned with the background-modulated wave-wave interaction of internal gravity waves. In a previous manuscript we had been able to show that wave modulation by a sheared mean flow can significantly inhibit the energy exchange through a near-resonant triadic interaction. However, the assumptions of Boussinesq dynamics and a constant stratification limited the applicability of the findings to the atmospheric context. We thus took on the task to extend the theory to semi-incompressible dynamics with both a variable stratification and sheared mean winds. Having derived the theory beforehand we used the 5 weeks together at MIT to explore the combined effects of the modulation by the wind and the stratification on the wave interaction. Interestingly the two modulation mechanisms can counteract each other opening up the possibility of strong interactions in regions with both changing stratification and strong shear. As the tropopause region typically exhibits these features it is of particular interest to be studied. A manuscript is now in preparation and planned to be submitted later this year.

Having already traveled to the US another possibility opened for me: the in-person attendance of the fall meeting of the American Geophysical Union in New Orleans. Traveling to conferences has always been one of my favorite parts of being a scientist. I am particular fond of getting to know places and people, exchanging ideas about our research, networking among peers and like-minded people and making friends throughout the world. The idea of attending a conference on site for the first time in two years was therefore especially tempting for me. Even though it came with the huge insecurity of sharing the venue with another 10,000 people during a pandemic the stringent health policies helped keeping the participants safe and the number of infections low.

With two successful talks, one on my research at the CRC181 and one on my science policy activities, I am more than happy with the received exposure and appreciation of our work. Fostering existing connections and forging new ones additionally rendered the conference experience as a very positive one. But maybe most importantly, I also realized what I had been missing out in the past months. Even though video conferences can account for the majority of the scientific collaboration it will not be able to replace the experience of and the human relationships associated to a person to person contact. Partnerships are build on these relationships and I am hoping that there will be a time soon where we can find a way to get back together. Personally I feel motivated to move forward and make progress in ways that I had not expected when I boarded that airplane on November 8. I would therefore like to particularly thank the CRC181, the research group MS-GWaves, the WilhelmHeraeus Visiting Professorship program and not at last Prof. Ulrich Achatz and Prof. Triantaphyllos Akylas for enabling this collaboration and the conference participation for me.

Implementing new parameterizations and algorithms

A new vertical coordinate frame for our ocean model has the potential to reduce unwanted spurious mixing effects.

Patrick Scholz, Postdoc in S2

I’m Patrick Scholz, Post Doc at Alfred Wegener Institute and work together with Sergey Danilov at Research area S2: “Improved parameterizations and numerics in climate models”. Aim of this project part is to implement new parameterizations and algorithms to improve the energetic consistency in the ocean component of climate models. In particular I will work with the new Finite Volume Sea Ice Ocean Model (FESOM2.0) and start there to implement a new vertical coordinate frame (Arbitrary Lagrangian Eulerian, ALE), based on vertical mesh motion, that has the potential to reduce unwanted spurious mixing effects in the ocean. ALE also allows to combine different versions of vertical coordinates in a single ocean setup, which will also help to broaden the functionality of the model. Further, we will implement new parameterizations of overflows, improved numerical transport algorithms and an energetically consistent parameterization of vertical mixing.