Welcome to the Collaborative Research Center TRR 181 ”Energy Transfers in Atmosphere and Ocean“
Discover
Energy does not vanish
The energy of a closed system is steady. It is not lost but rather converted into other forms, such as when kinetic energy is transferred into thermal energy or vice versa heat results in a force.
However, this fundamental principle of natural science is often still a problem for climate research. For example, in case of the calculation of ocean currents, where small-scale vortices as well as mixing processes they induce need to be considered, without fully understanding where the energy for their creation originates from. This is similar in the atmosphere, the only difference being that air is moving instead of water. Again, local turbulences can drive larger movements or vice versa waves on a larger scale can disintegrate into small structures.
All these processes are important for the Earth’s climate and determine how temperatures will rise in the future.
Being Part of the Team: What TRR 181 PhDs say
Existing climate models show energetic and mathematical inconsistencies which may lead to fundamental errors in climate forecasts. Now is the right time to combine recent efforts in Meteorology, Oceanography and applied Mathematics and to go new ways.
News
DFG supports second phase of TRR 181!

The DFG decided to support the second phase of our Transregio Project. Now we can continue our research for 3,5 years. more ›
New publication in science magazine "Spektrum" by PL Armin Iske and Postdoc Stephan Juricke

Our TRR 181 Project leader Armin Iske and Postdoc Stephan Juricke published in German Science magazine "Spektrum der Wissenschaft - Magazin für Naturwissenschaft": Wie ein Klimamodell entsteht. more ›
ENERGY TRANSFERS@Artville Festival in Hamburg

We are happy to announce that the first outcome of our Art&Science Collaboration ENERGY TRANSFERS will be part of the Artville Festival in Hamburg. The theater play OCEANVIEW SUITE is part of the Digital Art Festival, that usually takes place in Wilhelmsburg, Hamburg. more ›
Latest Publications
Carpenter, J. R. , Rodrigues, A., Schultze, L. K. P., Merckelbach, L. M., Suzuki, N., Baschek, B. & Umlauf, L. (2020). Shear Instability and Turbulence Within a Submesoscale Front Following a Storm. Geophys. Res. Lett., doi: https://doi.org/10.1029/2020GL090365.
Juricke, S., Danilov, S., Koldunov, N., Oliver, M.,Sein, D.V.,Sidorenko, D. & Wang, Q. (2020). A Kinematic Kinetic Energy Backscatter Parametrization: From Implementation to Global Ocean Simulations. J. Adv. Model Earth Sy., doi: https://doi.org/10.1029/2020MS002175.
Löb, J., Köhler, J., Mertens, C., Walter, M., Li, Z., von Storch, J.‐S., et al. (2020). Observations of the low‐mode internal tide and its interaction with mesoscale flow south of the Azores. J. Geophys. Res.: Oceans, 125, e2019JC015879, doi: https://doi.org/10.1029/2019JC015879.