M5: Reducing Spurious Mixing and Energetic Inconsistencies in Realistic Ocean-Modelling Applications
Principal investigators: Prof. Sergey Danilov (Alfred Wegener Institute for Polar and Marine Research Bremerhaven/Constructor University), Prof. Armin Iske (Universität Hamburg), Dr. Knut Klingbeil (Leibniz Institute for Baltic Sea Research Warnemünde)
Objectives
The project investigates important aspects of the Arbitrary Lagrangian-Eulerian (ALE) layer motion framework and high-order weighted essentially non-oscillatory (WENO) advection schemes, in order to fully exploit the potential of these new concepts in realistic ocean climate modelling applications. During the first phase, these concepts have been identified as the most promising techniques to significantly reduce spurious mixing in ocean models. However, now the efforts in basic research have to be extended to address emerged challenges related to general robustness and efficiency as well as other further mandatory model adjustments. The main goals are:
- Development of a robust generalized layer motion algorithm based on Lagrangian layer motion and a combination of different regridding strategies.
- Adaptation and optimization of high-order numerical schemes for remapping, internal pressure gradient and WENO advection to the resulting unstructured mesh layout with sloping layers in FESOM.
- Development of new diagnostics for diapycnal mixing and internal pressure gradient errors to assess the energetic consistency of the newly designed model components.
With these efforts, we aim for enabling a new era of energy-consistent climate simulations, which will not be dominated by spurious numerical mixing anymore, but by the advanced and wellcalibrated physically-motivated mixing parameterizations developed in other subprojects of this CRC.
Phase 1
The proposed project aims to further develop, assess and analyse numerical algorithms leading to reduction in spurious diapycnal mixing in ocean circulation models. This goal will be achieved by (i) the design and implementation of vertical mesh motion algorithms that reduce spurious mixing; (ii) use of advective schemes with isopycnal diffusion and special design of limiters; (iii) development and analysis of high-order advection algorithms relying on high-order flux evaluation.

Reduction of spurious mixing by Lagrangian layer motion
Challenges
- realistic applications
- with different dynamical regimes
- combination of individual
- layer motion techniques
- triggering of regridding
- efficient mesh regularization
- analysis of diapycnal mixing
- interpretation of mean
- (thickness-weighted) quantities
Reduction of spurious mixing by new advection schemes and by stabilization with isoneutral dissipation
Improved understanding of solvers for generalized Riemann problems
Research gap:
Fast and robust solvers available, but only few rigorous analysis
Main questions:
What do approximate solvers
actually compute from an analytical perspective?
What is the common analytical structure of different solvers?
Our contribution:
Two new insights, important steps towards closing the gap
Reports
Reducing Spurious Mixing in Ocean Models
Every simulation ever done in human history includes some compromise.
Hey everyone, I am Tridib, and I am a PhD student employed at Jacobs University but also working at the Alfred Wegener Institute. I am excited to share with you who I am and what my project is.
Beginning with a bit about myself, I did my Bachelor in Mechanical engineering, my Master in Aerospace Engineering, and currently, I am pursuing my PhD in Mathematics. Some of my proudest moments from academia include winning the gold medal and being the first ever in my Bachelor’s university from core engineering to score a perfect ten semester GPA, being the only one from my Master’s university in core engineering to win the prestigious DAAD scholarship for four semesters consecutively, and hopefully, being the first member of my family to ever get a PhD.
get a PhD. I am heavily invested outside academia as well. I love fine arts and landscape photography. My photograph of the Singapore National Museum was publicly voted as the third-best entry in a photography contest. I also love video editing and have worked on campaigns for business start-ups. I love digital painting too. Above all, my most prideful endeavour remains my involvement with nature conservation and animal rescue operations. Some of the significant differences that we were able to achieve include - preserving the rich biodiversity of nearly 130 acres of the Amazon forest in the Lorento and Ucayali regions of Peru vide the Rain Forest Trust, being part of the biggest ever Asian moon bear rescue operation from the bile farms in Vietnam and Nanning, southern China through the Animal Asia Foundation and being able to adopt countless abused and malnourished animals including an elephant named Yin Dee through the Save Elephant Foundation, which I am particularly fond of.
From bungee jumping to queuing for the next Dan Brown, I try not to miss out on good things in life.
Coming to my PhD project, I am working under the supervision of Dr. Sergey Danilov on the TRR subproject M5. Every simulation ever done in human history includes some compromise. Real world is infinitely complex, and whenever we try to model something mathematically, we can only pick our battles. We are limited by our computational resources, machine precisions, and of course, the discoveries we are yet to make. The same goes for the ocean. In such a case, our estimated solution approximates the realworld physical solution only to a certain level of accuracy. One of the consequences of this deviance is the “spurious mixing” or numerical mixing, which produces the same effect as real-world mixing, but has no physical reason to exist. These affect the ocean models greatly, reducing their prediction accuracy for phenomena like meridional overturning, overflows, and tracer transport. It impacts any numerical experiment reliant on density structures highly. They also affect our model parametrizations to an unknown extent, making them even more undesirable. My PhD includes exploring the reasons behind the spurious mixing in ocean models and finding ways to mitigate them. Currently, I am working with the ocean model FESOM 2.0. I am looking into different time-stepping schemes for the layer transport and barotropic sub-time stepping accuracy with a plan to look into layer motions within the true Arbitrary Lagrangian-Eulerian (ALE) framework by the end of this year.
Analyzing Diapycnal Mixing in Ocean Models
The part of my supervisors and I in the M5, is to develop analysis tools to evaluate whether the new methods succeed in reducing the spurious mixing.
Hi! My name is Erika and I work as a PhD student at the Leibniz-Institute for Baltic Sea Research Warnemünde (IOW) in Warnemünde, Rostock. I am supervised by Dr. Knut Klingbeil (IOW) and Prof. Dr. Hans Burchard (IOW) and am part of the TRR subproject M5 entitled “Reducing Spurious Mixing and Energetic Inconsistencies in Realistic Ocean-Modelling Applications”.
Before I joined the TRR, I pursued a Bachelor in Physics/Meteorology at the University of Stockholm (Sweden) and a Master in Atmosphere – Climate – Continental surfaces at the University Grenoble Alpes (France). My first connection with physical oceanography was made possible through two internships, during which I worked with the NEMO-eNATL60 model to (a) assess meddies (Mediterranean eddies) and Mediterranean overflow water, and (b) describe the dynamical interaction of internal tides and eddies.
The broad goal of the work in M5 is to implement new methods to reduce errors due to the so called spurious numerical mixing in current ocean models. The part of my supervisors and I in the M5 is to develop analysis tools to evaluate whether the new methods succeed in reducing the spurious mixing. The way we will go about this, is to extend existing tools and ideas about diahaline mixing to diapycnal mixing (mixing across isohalines to mixing across isopycnals).
I will work in particular with the GETM model (https://getm.eu/) which was developed in the working group at IOW that I am a part of. The analysis tools will thus be developed in GETM for idealized cases, extended to the Baltic Sea, and are later to be implemented and applied to global ocean models in collaboration with the Synthesis projects S1 and S2.
Publications
Reinert, M., Lorenz, M., Klingbeil, K., Büchmann, B., & Burchard, H. (2023). High-Resolution Simulations of the Plume Dynamics in an Idealized 79°N Glacier Cavity Using Adaptive Vertical Coordinates. J. Adv. Model Earth Sy. 15(10), e2023MS003721, doi: https://doi.org/10.1029/2023MS003721.
Lorenz, M., Klingbeil, K., Burchard, H. et al. (2023). Local mixing determines spatial structure of diahaline exchange flow in a mesotidal estuary – a study of extreme runoff conditions. J. Phys. Oceanogr. 125, e2019JC015527, doi: https://doi.org/10.1175/JPO-D-23-0052.1.
Klingbeil, K. & Henell, E. (2023). A rigorous derivation of the Water Mass Transformation framework, the relation between mixing and dia-surface exchange flow, and links to recent theories in estuarine research. J. Phys. Oceanogr., doi: https://doi.org/10.1175/JPO-D-23-0130.1.
Umlauf, L., Klingbeil K., Radke, H., Schwefel, R., Bruggeman, J. & Holtermann, P.L. (2023). Hydrodynamic control of sediment-water fluxes: Consistent parameterization and impact in coupled benthic-pelagic models. J. Geophys. Res. - Oceans 128, e2023JC019651, doi: https://doi.org/10.1029/2023JC019651.
Henell, E., Burchard, H., Gräwe, U. & Klingbeil, K. (2023). Spatial composition of the diahaline overturning circulation in a fjord-type, non-tidal estuarine system. J. Geophys. Res. - Oceans, revised, doi: 10.22541/essoar.168053178.80696833/v1.
Uchida, T., Danilov, S., Koldunov, N. et al. (2022). Cloud-based framework for inter-comparing submesoscale-permitting realistic ocean models. Geosci. Model Dev. 15, 5829–5856, doi: https://doi.org/10.5194/gmd-15-5829-2022.
Li, X., Lorenz M., Klingbeil, K., Chrysagi, E., Gräwe, U., Wu, J. & Burchard, H. (2022). Salinity Mixing and Diahaline Exchange Flow in A Large Multi-outlet Estuary with Islands. J. Phys. Oceanogr., doi: https://doi.org/10.1175/JPO-D-21-0292.1.
Fofonova, V., Kärnä, T., Klingbeil, K., Androsov, A., Kuznetsov, I., Sidorenko, D., Danilov, S., Burchard, H. & Wiltshire, K.H. (2021). Plume spreading test case for coastal ocean models. Geosci. Model Dev. 14, 6945–6975, doi: https://doi.org/10.5194/gmd-14-6945-2021.
Scholz, P., Sidorenko, D., Danilov, S., Wang, Q., Koldunov, N., Sein, D., & Jung, T. (2022). Assessment of the Finite-VolumE Sea ice–Ocean Model (FESOM2.0) – Part 2: Partial bottom cells, embedded sea ice and vertical mixing library CVMix. Geosci. Model Dev. 15(2), 335–363, doi: https://doi.org/10.5194/gmd-15-335-2022.
Klingbeil, K., Danilov, S., Burchard, H. et al. (2021). Plume spreading test case for coastal ocean models. Geosci. Model Dev. 14(11), doi: https://doi.org/10.5194/gmd-14-6945-2021.
Bauer, T. P., Holtermann, P., Heinold, B., Radtke, H., Knoth, O. & Klingbeil, K. (2021). ICONGETM v1.0 – flexible NUOPC-driven two-way coupling via ESMF exchange grids between the unstructured-grid atmosphere model ICON and the structured-grid coastal ocean model GETM. Geosci. Model Dev., 14, 4843–4863, doi: https://doi.org/10.5194/gmd-14-4843-2021.
Burchard, H., Klingbeil, K., Lorenz, M. et al. (2021). Effective Diahaline Diffusivities in Estuaries. J. Adv. Model Earth Sy. 13(2), doi: https://doi.org/10.1029/2020MS002307.
Osinski, R.D., Enders, K., Klingbeil, K. et al. (2020). Model uncertainties of a storm and their influence on microplastics and sediment transport in the Baltic Sea. Ocean Sci. 16(6), 1491–1507, doi: https://doi.org/10.5194/os-16-1491-2020.
Kerimoglu, M., Voynova, Y.G., Klingbeil, K. et al. (2020). Interactive impacts of meteorological and hydrological conditions on the physical and biogeochemical structure of a coastal system. Biogeosciences 17(20), doi: https://doi.org/10.5194/bg-17-5097-2020.
Schulz, K., Klingbeil, K., Morys, C., & Gerkema, T. (2020). The fate of mud nourishment in response to short-term wind forcing. Estuar. Coast 44, doi: https://doi.org/10.1007/s12237-020-00767-4.
Klingbeil, K., Burchard, H., Winter, C. et al. (2020). Processes of Stratification and Destratification During An Extreme River Discharge Event in the German Bight ROFI. J. Geophys. Res.- Oceans 125(8), doi: https://doi.org/10.1029/2019JC015987.
Smolentseva, M., & Danilov, S. (2020). Comparison of several high-order advection schemes for vertex-based triangular discretization. Ocean Dyn., 70(4), 463-479, https://doi.org/10.1007/s10236-019-01337-4 .
Lorenz, M., Klingbeil, K., & Burchard, H. (2020). Numerical study of the exchange flow of the Persian Gulf using an extended Total Exchange Flow analysis framework. J. Geophys. Res.: Oceans 125(2), e2019JC015527, doi: https://doi.org/10.1029/2019JC015527.
Scholz, P., Sidorenko, D., Gurses, O., Danilov, S., Koldunov, N., Wang, Q., Sein, D., Smolentseva, M., Rakowsky, N. & Jung, T. (2019). Assessment of the Finite VolumE Sea Ice Ocean Model (FESOM2.0), Part I: Description of selected key model elements and comparison to its predecessor version, Geosci. Model Dev., https://doi.org/10.5194/gmd-2018-329.
Klingbeil, K., J. Becherer, E. Schulz, H. E. de Swart, H. M. Schuttelaars, A. Valle-Levinson and H. Burchard (2019). Thickness-weighted averaging in tidal estuaries and the vertical distribution of the Eulerian residual transport. J. Phys. Oceanogr., doi: https://doi.org/10.1175/JPO-D-18-0083.1.
Stähler, S. C., Panning, M. P., Hadziioannou, C., Lorenz, R. D., Vance, S., Klingbeil, K., & Kedar, S. (2019). Seismic signal from waves on Titan's seas. Earth Planet Sc. Lett., 520, 250-259, doi: https://doi.org/10.1016/j.epsl.2019.05.043.
Lorenz, M., K. Klingbeil, P. MacCready, and H. Burchard (2019). Numerical issues of the Total Exchange Flow (TEF) analysis framework for quantifying estuarine circulation, Ocean Sci., 15, 601-614.
Gräwe, U., K. Klingbeil, J. Kelln, and S. Dangendorf (2019). Decomposing mean sea level rise in a semi-enclosed basin, the Baltic Sea. J. Climate, doi: https://doi.org/10.1175/JCLI-D-18-0174.1.
Burchard, H., X. Lange, K. Klingbeil, and P. MacCready (2019) Mixing estimates for estuaries, J. Phys. Oceanogr., 49, 631-648, doi: https://doi.org/10.1175/JPO-D-18-0147.1.
Iske, A. (2019). Approximation Theory and Algorithms for Data Analysis. Texts App. Math., 68, Springer, doi: 10.1007/978-3-030-05228-7.
Klingbeil, K., Burchard, H., Danilov, S., Goetz, C. & Iske, A. (2019). Reducing spurious diapycnal mixing in ocean models. In Energy Transfers in Atmosphere and Ocean (pp. 245-286). Springer, Cham., doi: https://doi.org/10.1007/978-3-030-05704-6_8.
Rybicki, M., Moldaenke, C., Rinke, K., Dahlhaus, H., Klingbeil, K., Holtermann, P. L. ... & J. Zhu (2019). WP-C: A Step Towards Secured Drinking Water: Development of an Early Warning System for Lakes. In Chinese Water Systems (pp. 159-205). Springer, Cham, doi: https://doi.org/10.1007/978-3-319-97568-9_5.
Burchard, H., Bolding, K., Feistel, R., Gräwe, U., MacCready, P., Klingbeil, K., Mohrholz, V., Umlauf, L., & van der Lee, E. M. , (2018). The Knudsen theorem and the Total Exchange Flow analysis framework applied to the Baltic Sea, Prog. Oceanogr., 165, 268-286, doi: https://doi.org/10.1016/j.pocean.2018.04.004.
Slavik, K., Lemmen, C., Zhang, W., Kerimoglu, O., Klingbeil, K. & Wirtz, K. W. (2018). The large-scale impact of offshore wind farm structures on pelagic primary productivity in the southern North Sea. Hydrobiologia, 1-19, doi: 10.1175/JAS-D-17-0114.1.
Klingbeil, K., Debreu, L., Lemarié, F. & Burchard, H. (2018). The numerics of hydrostatic structured-grid coastal ocean models: state of the art and future perspectives. Ocean Model., Vol. 125, 80-105, doi: https://doi.org/10.1016/j.ocemod.2018.01.007.
Frassl, M., B. Boehrer, P. Holtermann, W. Hu, K. Klingbeil, Z. Peng, ... & K. Rinke (2018). Opportunities and Limits of Using Meteorological Reanalysis Data for Simulating Seasonal to Sub-Daily Water Temperature Dynamics in a Large Shallow Lake. Water-Sui., 10(5), 594, doi: https://doi.org/10.3390/w10050594.
Lemmen, C., Hofmeister, R., Klingbeil, K., Nasermoaddeli, M. H., Kerimoglu, O., Burchard, H., Kösters, F. & Wirtz, K. W. (2018). Modular System for Shelves and Coasts (MOSSCO v1.0) – a flexible and multi-component framework for coupled coastal ocean ecosystem modelling, Geosci. Model Dev., 10.5194/gmd-2017-138 .
Nasermoaddeli, M. H., Lemmen, C., Stigge, G., Kerimoglu, O., Burchard, H., Klingbeil, K., Hofmeister, R., Kreus, M., Wirtz, K. W. & Kösters, F. A (2018). A model study on the large-scale effect of macrofauna on the suspended sediment concentration in a shallow shelf sea Estuarine, Coastal and Shelf Science, Geosci. Model Dev., https://doi.org/10.1016/j.ecss.2017.11.002.