New publication by our PI Jeff Carpenter

Our PI Jeff Carpenter co-published a new paper in the "Journal of Atmospheric and Oceanic Technology" titled: "A Dynamic Flight Model for Slocum Gliders and Implications for Turbulence Microstructure Measurements".


The turbulent dissipation rate ε is a key parameter to many oceanographic processes. Recently, gliders have been increasingly used as a carrier for microstructure sensors. Compared to conventional ship-based methods, glider-based microstructure observations allow for long-duration measurements under adverse weather conditions and at lower costs. The incident water velocity U is an input parameter for the calculation of the dissipation rate. Since U cannot be measured using the standard glider sensor setup, the parameter is normally computed from a steady-state glider flight model. As ε scales with U2 or U4, depending on whether it is computed from temperature or shear microstructure, respectively, flight model errors can introduce a significant bias. This study is the first to use measurements of in situ glider flight, obtained with a profiling Doppler velocity log and an electromagnetic current meter, to test and calibrate a flight model, extended to include inertial terms. Compared to a previously suggested flight model, the calibrated model removes a bias of approximately 1 cm s−1 in the incident water velocity, which translates to roughly a factor of 1.2 in estimates of the dissipation rate. The results further indicate that 90% of the estimates of the dissipation rate from the calibrated model are within a factor of 1.1 and 1.2 for measurements derived from microstructure temperature sensors and shear probes, respectively. We further outline the range of applicability of the flight model.

Download it here