TRR 181 DFG
  • Home
  • About us
  • News
  • Research
    • Area M Mathematics, New Concepts and Methods
      • M2 Mathematical, Numerical and Datadriven Approaches to Ocean Parameterisations
      • M3 Towards Consistent Subgrid Momentum Closures
      • M5 Reducing Spurious Dissipation and Energetic Inconsistencies in Realistic Ocean Modelling Applications
    • Area T Turbulence and Boundary Layer
      • T2 Ocean Surface Layer Energetics
      • T4 Energy Fluxes at the Air-Sea Interface
      • T5 Gravity Wave Genesis, Break-up and Dissipation
    • Area W Wave Processes
      • W1 Gravity Wave Parameterisation for the Atmosphere
      • W2 Observed and Simulated Internal Tides: Generation, Modification by Eddies, and Contribution to Energy Budget
      • W4 Gravity Wave Parameterisation for the Ocean
      • W5 Internal Wave Energy Dissipation and Wavenumber Spectra: Adaptive Sampling in the Ocean Interior
      • W6 Spectral Energy Fluxes by Wave-Wave Interactions
    • Area L Large-Scale and Balanced Processes
      • L2 Quantifying Dynamical Regimes in the Ocean and the Atmosphere
      • L3 Meso- to Submesoscale Turbulence in the Ocean
      • L4 Multiscale Ocean-Atmosphere Coupling
      • L5 Future Climate Applications of Mixing Parameterisations in Earth-System Models
    • Area S Synthesis with Climate Models
      • S1 Diagnosis and Metrics in Climate Models
      • S2 Improved Parameterisations and Numerics in Climate Models
      • S3 Climate Model Intercomparison
  • Archive
    • Phase 1
      • Area M Mathematics, new concepts and methods
      • Area T Turbulence and boundary layer
      • Area W Wave processes
      • Area L Large-scale and balanced processes
      • Area S Synthesis Climate models as metrics
    • Phase 2
      • Area M Mathematics, New Concepts and Methods
      • Area T Turbulence and Boundary Layer
      • Area W Wave Processes
      • Area L Large-Scale and Balanced Processes
      • Area S Synthesis with Climate Models
  • Discover
    • Videos
    • Info Graphics
    • Expeditions
    • Newsletter
    • Reports
    • Outreach
  • Publications
  • Events
  • Search
  • Jobs
  • Internal Area
  • Contact
  1. Home
  2. Publications

Publications

Scientific publications are a metric for the success of a project. Our scientists publish in internationally renowned journals and books. Have a look at what has been published so far.

Filter by Year
  • All
  • 2025
  • 2024
  • 2023
  • 2022
  • 2021
  • 2020
  • 2019
  • 2018
  • 2017
  • 2016
Filter by Area
  • Area M
  • Area T
  • Area W
  • Area L
  • Area S
  • Oliver, M. (2017). Lagrangian averaging with geodesic mean. P. R. Soc. London, https://doi.org/10.1098/rspa.2017.0558.

  • Nasermoaddeli, M. H., Lemmen, C., Stigge, G., Kerimoglu, O., Burchard, H., Klingbeil, K., Hofmeister, R., Kreus, M., Wirtz, K. W. & Kösters, F. A (2018). A model study on the large-scale effect of macrofauna on the suspended sediment concentration in a shallow shelf sea Estuarine, Coastal and Shelf Science, Geosci. Model Dev., https://doi.org/10.1016/j.ecss.2017.11.002.

  • Vissio, G. & Lucarini, V. (2017). A proof of concept for scale‐adaptive parametrizations: the case of the Lorenz'96 model. Q. J. Roy. Meteor. Soc., 144(710), 63-75, doi.org/10.1002/qj.3184.

  • Conti, G. & Badin, G. (2017). Hyperbolic Covariant Coherent Structures in Two Dimensional Flows.  Fluids, 2017, 2(4), 50., doi.org/10.3390/fluids2040050.

  • Bódai, T. and Franzke, C. (2017). Predictability of fat-tailed extremes. Phys. Rev. E, 96(3), 032120, doi.org/10.1103/PhysRevE.96.032120.

  • Gálfi, V. M., Bódai, T. & Lucarini, V. (2017). Convergence of extreme value statistics in a two-layer quasi-geostrophic atmospheric model. Complexity, 2017, doi.org/10.1155/2017/5340858.

  • Graves, T., Gramacy, R., Watkins, N. & Franzke, C. (2017). A brief history of long memory: Hurst, Mandelbrot and the road to ARFIMA, 1951–1980. Entropy, 19(9), 437, doi: https://doi.org/10.3390/e19090437.

  • Kutsenko, A. A. (2017). Application of matrix-valued integral continued fractions to spectral problems on periodic graphs with defect. J. Math. Phys. 58, 063516, doi:10.1063/1.4989987

  • Dritschel, D. G., Gottwald, G. A. & Oliver, M. (2017). Comparison of variational balance models for the rotating shallow water equations. J. Fluid Mech., 822, 689-716, doi: https://doi.org/10.1017/jfm.2017.292.

  • Blender, R. & Badin, G. (2017).Construction of Hamiltonian and Nambu Forms for the Shallow Water Equations. Fluids 2017, 2 (2), doi:10.3390/fluids2020024.

    • ‹
    • …
    • 13
    • 14
    • 15
    • ›
TRR 181
TwitterYouTube

Coordinated by Universität Hamburg, Center for Earth System Research and Sustainability (CEN)

TRR 181 project office
Bundesstr. 53
20146 Hamburg

trr181.cen[at]uni-hamburg.de
+49 40 42838 5094

ImprintPrivacy Policy
Top