TRR 181 DFG
  • Home
  • About us
  • News
  • Research
    • Area M Mathematics, New Concepts and Methods
      • M2 Mathematical, Numerical and Datadriven Approaches to Ocean Parameterisations
      • M3 Towards Consistent Subgrid Momentum Closures
      • M5 Reducing Spurious Dissipation and Energetic Inconsistencies in Realistic Ocean Modelling Applications
    • Area T Turbulence and Boundary Layer
      • T2 Ocean Surface Layer Energetics
      • T4 Energy Fluxes at the Air-Sea Interface
      • T5 Gravity Wave Genesis, Break-up and Dissipation
    • Area W Wave Processes
      • W1 Gravity Wave Parameterisation for the Atmosphere
      • W2 Observed and Simulated Internal Tides: Generation, Modification by Eddies, and Contribution to Energy Budget
      • W4 Gravity Wave Parameterisation for the Ocean
      • W5 Internal Wave Energy Dissipation and Wavenumber Spectra: Adaptive Sampling in the Ocean Interior
      • W6 Spectral Energy Fluxes by Wave-Wave Interactions
    • Area L Large-Scale and Balanced Processes
      • L2 Quantifying Dynamical Regimes in the Ocean and the Atmosphere
      • L3 Meso- to Submesoscale Turbulence in the Ocean
      • L4 Multiscale Ocean-Atmosphere Coupling
      • L5 Future Climate Applications of Mixing Parameterisations in Earth-System Models
    • Area S Synthesis with Climate Models
      • S1 Diagnosis and Metrics in Climate Models
      • S2 Improved Parameterisations and Numerics in Climate Models
      • S3 Climate Model Intercomparison
  • Archive
    • Phase 1
      • Area M Mathematics, new concepts and methods
      • Area T Turbulence and boundary layer
      • Area W Wave processes
      • Area L Large-scale and balanced processes
      • Area S Synthesis Climate models as metrics
    • Phase 2
      • Area M Mathematics, New Concepts and Methods
      • Area T Turbulence and Boundary Layer
      • Area W Wave Processes
      • Area L Large-Scale and Balanced Processes
      • Area S Synthesis with Climate Models
  • Discover
    • Videos
    • Info Graphics
    • Expeditions
    • Newsletter
    • Reports
    • Outreach
  • Publications
  • Events
  • Search
  • Jobs
  • Internal Area
  • Contact
  1. Home
  2. Publications

Publications

Scientific publications are a metric for the success of a project. Our scientists publish in internationally renowned journals and books. Have a look at what has been published so far.

Filter by Year
  • All
  • 2025
  • 2024
  • 2023
  • 2022
  • 2021
  • 2020
  • 2019
  • 2018
  • 2017
  • 2016
Filter by Area
  • Area M
  • Area T
  • Area W
  • Area L
  • Area S
  • Kutsenko, A. A., Nagy, A. J.,  Su, X., Shuvalov, A. L. & Norris, A. N. (2017). Wave Propagation and Homogenization in 2d and 3d Lattices: A Semi-Analytical Approach. Q. J. Mech. Appl. Math. (2017) 70 (2): 131-151. doi: 10.1093/qjmam/hbx002.

  • Franzke, C. L. (2017). Impacts of a changing climate on economic damages and insurance.Econ. Dis. Clim. Cha., 1(1), 95-110, doi: https://doi.org/10.1007/s41885-017-0004-3.

  • Carpenter, J. R., Guha, A. & Heifetz, E. (2017). A physical interpretation of the wind-wave instability as interacting waves.  J. Phys. Oceanogr., doi: 

    https://doi.org/10.1175/JPO-D-16-0206.1.

  • Gonchenko, S. V. and Ovsyannikov, I. I. (2017). Homoclinic tangencies to resonant saddles and discrete Lorenz attractors.Discret Contin. Dyn. S., Vol 10 (2), p. 273-288, doi: 10.3934/dcdss.2017013.

  • Blender, R. & Badin, G. (2017). Viscous dissipation in 2D fluid dynamics as a symplectic process and its metriplectic representation. Eur. Phys. J. Plus, 132(3), 137, doi: 10.1140/epjp/i2017-11440-x.

  • Gonchenko, M., Gonchenko, S. & Ovsyannikov, I. (2017). Bifurcations of Cubic Homoclinic Tangencies in Two-dimensional Symplectic Maps. Math. Model. Nat. Phenom., Vol. 12, No. 1, 2017, pp. 41-61. doi: 10.1051/mmnp/20171210.

  • Graves, T., Franzke, C. L., Watkins, N. W., Gramacy, R. B. & Tindale, E. (2017). Systematic inference of the long-range dependence and heavy-tail distribution parameters of ARFIMA models.Physica A, 473, 60-71, doi: https://doi.org/10.1016/j.physa.2017.01.028.

  • Franzke, C. L. (2017). Extremes in dynamic-stochastic systems.Chaos, 27(1), 012101, doi.org/10.1063/1.497354.

  • Franzke, C. L. and O'Kane, T. J. (Eds.) (2017). Nonlinear and Stochastic Climate Dynamics. Cambridge University Press, doi: 10.1017/9781316339251.

  • Ovsyannikov, I. I. & Turaev, D. V. (2016). Analytic proof of the existence of the Lorenz attractor in the extended Lorenz model. Nonlinearity, 30(1), 115, doi: https://doi.org/10.1088/1361-6544/30/1/115.

    • ‹
    • …
    • 13
    • 14
    • 15
TRR 181
TwitterYouTube

Coordinated by Universität Hamburg, Center for Earth System Research and Sustainability (CEN)

TRR 181 project office
Bundesstr. 53
20146 Hamburg

trr181.cen[at]uni-hamburg.de
+49 40 42838 5094

ImprintPrivacy Policy
Top