TRR 181 DFG
  • Home
  • About us
  • News
  • Research
    • Area M Mathematics, New Concepts and Methods
      • M2 Mathematical, Numerical and Datadriven Approaches to Ocean Parameterisations
      • M3 Towards Consistent Subgrid Momentum Closures
      • M5 Reducing Spurious Dissipation and Energetic Inconsistencies in Realistic Ocean Modelling Applications
    • Area T Turbulence and Boundary Layer
      • T2 Ocean Surface Layer Energetics
      • T4 Energy Fluxes at the Air-Sea Interface
      • T5 Gravity Wave Genesis, Break-up and Dissipation
    • Area W Wave Processes
      • W1 Gravity Wave Parameterisation for the Atmosphere
      • W2 Observed and Simulated Internal Tides: Generation, Modification by Eddies, and Contribution to Energy Budget
      • W4 Gravity Wave Parameterisation for the Ocean
      • W5 Internal Wave Energy Dissipation and Wavenumber Spectra: Adaptive Sampling in the Ocean Interior
      • W6 Spectral Energy Fluxes by Wave-Wave Interactions
    • Area L Large-Scale and Balanced Processes
      • L2 Quantifying Dynamical Regimes in the Ocean and the Atmosphere
      • L3 Meso- to Submesoscale Turbulence in the Ocean
      • L4 Multiscale Ocean-Atmosphere Coupling
      • L5 Future Climate Applications of Mixing Parameterisations in Earth-System Models
    • Area S Synthesis with Climate Models
      • S1 Diagnosis and Metrics in Climate Models
      • S2 Improved Parameterisations and Numerics in Climate Models
      • S3 Climate Model Intercomparison
  • Archive
    • Phase 1
      • Area M Mathematics, new concepts and methods
      • Area T Turbulence and boundary layer
      • Area W Wave processes
      • Area L Large-scale and balanced processes
      • Area S Synthesis Climate models as metrics
    • Phase 2
      • Area M Mathematics, New Concepts and Methods
      • Area T Turbulence and Boundary Layer
      • Area W Wave Processes
      • Area L Large-Scale and Balanced Processes
      • Area S Synthesis with Climate Models
  • Discover
    • Videos
    • Info Graphics
    • Expeditions
    • Newsletter
    • Reports
    • Outreach
  • Publications
  • Events
  • Search
  • Jobs
  • Internal Area
  • Contact
  1. Home
  2. Publications

Publications

Scientific publications are a metric for the success of a project. Our scientists publish in internationally renowned journals and books. Have a look at what has been published so far.

Filter by Year
  • All
  • 2025
  • 2024
  • 2023
  • 2022
  • 2021
  • 2020
  • 2019
  • 2018
  • 2017
  • 2016
Filter by Area
  • Area M
  • Area T
  • Area W
  • Area L
  • Area S
  • Sidorenko, D., Koldunov, N., Wang, Q., Danilov, S., Goessling, H. F., Gurses, O., ... & Jung, T. (2018). Influence of a salt plume parameterization in a coupled climate model. J. Adv. Model Earth Sy., doi: https://doi.org/10.1029/2018MS001291.

  • Ivanov, V., Smirnov, A., Alexeev, V., Koldunov, N. V., Repina, I., & Semenov, V. (2018). Contribution of convection‐induced heat flux to winter ice decay in the Western Nansen Basin.J. Geophys. Res.-Oceans, doi: https://doi.org/10.1029/2018JC013995.

  • Koldunov, N.V., Cabos, W., Sein, D.V. et al. (2019). Dynamical downscaling of historical climate over CORDEX Central America domain with a regionally coupled atmosphere–ocean model. Clim. Dyn. 52, 4305–4328, doi: https://doi.org/10.1007/s00382-018-4381-2. 

  • Cabos, W., Sein, D. V., Durán-Quesada, A., Liguori, G., Koldunov, N. V., Martínez-López, B., ... & Pinto, J. G. (2018). Dynamical downscaling of historical climate over CORDEX Central America domain with a regionally coupled atmosphere–ocean model. Clim. Dynam., 1-24, doi: https://doi.org/10.1007/s00382-018-4381-2.

  • Sein, D. V., Koldunov, N. V., Danilov, S., Sidorenko, D., Wekerle, C., Cabos, W., ... & Jung, T. (2018). The relative influence of atmospheric and oceanic model resolution on the circulation of the North Atlantic Ocean in a coupled climate model.J. Adv. Model. Earth Sy., doi: https://doi.org/10.1029/2018MS001327.

  • Chouksey, M., Eden, C., & Brüggemann, N. (2018). Internal gravity wave emission in different dynamical regimes. J. Phys. Oceanogr., 48(8), 1709-1730, doi: https://doi.org/10.1175/JPO-D-17-0158.1.

  • Faranda, D., Lembo, V., Iyer, M., Kuzzay, D., Chibbaro, S., Daviaud, F. & Dubrulle, B. (2018). Computation and Characterization of Local Subfilter-Scale Energy Transfers in Atmospheric Flows. J. Atm. Sci., Vol 75, 2175-2186,doi: 10.1175/JAS-D-17-0114.1

  • Wang, Q., Wekerle, C., Danilov, S., Koldunov, N., Sidorenko, D., Sein, D., Rabe, B. & Jung, T. (2018). Arctic Sea Ice Decline Significantly Contributed to the Unprecedented Liquid Freshwater Accumulation in the Beaufort Gyre of the Arctic Ocean, Geophys. Res. Lett., 45, 4956-4964, doi: https://doi.org/10.1029/2018GL077901.

  • Xu, J., Koldunov, N. V., Remedio, A.R.C., Sein, D.V., Zhi, X., Jiang, X., Xu, M., Zhu, X., Fraedrich, K. & Jacob, D. (2018). On the role of horizontal resolution over the Tibetan Plateau in the REMO regional climate model, Climate Dynam., February 8, 2018, 1–18, https://doi.org/10.1007/s00382-018-4085-7

  • Sein, D. V., Koldunov, N. V., Danilov, S., Wang, Q., Sidorenko, D., Fast, I., ... & Jung, T. (2017). Ocean modeling on a mesh with resolution following the local Rossby radius. J. Adv. Model. Earth Sy., 9(7), 2601-2614, doi: https://doi.org/10.1002/2017MS001099.

    • ‹
    • …
    • 8
    • 9
    • 10
    • ›
TRR 181
MastodonLinkedInYouTube

Coordinated by Universität Hamburg, Center for Earth System Research and Sustainability (CEN)

TRR 181 project office
Bundesstr. 53
20146 Hamburg

trr181.cen[at]uni-hamburg.de
+49 40 42838 5094

ImprintPrivacy Policy
Top