• Gutjahr, O., Jungclaus, J. H., Brüggemann, N., Haak, H. & Marotzke, J. (2022). Air-Sea Interactions and Water Mass Transformation During a Katabatic Storm in the Irminger Sea.  J. Geophys. Res.- Oceans 127, e2021JC018075, doi: https://doi.org/10.1029/2021JC018075.

  • Nagavciuc, V., Scholz, P. & Ionita, M. (2022). Hotspots for warm and dry summers in Romania. Nat. Hazards Earth Syst. Sci. 22(4), 1347–1369, doi: https://doi.org/10.5194/nhess-22-1347-2022.

  • Darbenas, Z., van der Hout, R. & Oliver, M. (2022). Long-time asymptotics of solutions to the Keller–Rubinow model for Liesegang rings in the fast reaction limit. Ann. Inst. H. Poincaré Anal. Non Linéaire 39(6), 1413–1458, doi: https://doi.org/10.4171/AIHPC/34.

  • Ovsyannikov, I. (2022). On the Birth of Discrete Lorenz Attractors Under Bifurcations of 3D Maps with Nontransversal Heteroclinic Cycles. Regul. Chaot. Dyn. 27, 217–231, doi: https://doi.org/10.1134/S156035472202006X.

  • Noethen, F. (2022). Well-Separating Common Complements for Sequences of Subspaces of the Same Codimension are Generic in Hilbert Spaces. Anal. Math., doi: https://doi.org/10.1007/s10476-022-0124-z.

  • Žagar, N., Lunkeit, F., Sielmann, F. & Xiao, W. (2022). Three-dimensional structure of the equatorial Kelvin wave: vertical structure functions, equivalent depths, and frequency and wavenumber spectra. Journal of Climate 35(7), 2209-2230, doi: https://doi.org/10.1175/JCLI-D-21-0342.1.

  • Ovsyannikov, I. & Ruan, H. (2022). Classification of Codimension-1 Singular Bifurcations in Low-Dimensional DAEs. Front. Appl. Math. Stat. 8:756699, doi: https://doi.org/10.3389/fams.2022.756699.

  • Hutter, N., Bouchat, A., Koldunov, N., Losch, M. et al. (2022). Sea Ice Rheology Experiment (SIREx): 2. Evaluating linear kinematic features in high-resolution sea ice simulations. J. Geophys. Res.- Oceans 127, e2021JC017666, doi: https://doi.org/10.1029/2021JC017666

  • Jungclaus, J. H., Brüggemann, N., Gutjahr, O., von Storch, J.S., Korn, P. et al. (2022). The ICON Earth System Model Version 1.0. J. Adv. Model Earth Sy. 14, e2021MS002813, doi: https://doi.org/10.1029/2021MS002813.

  • Nobili, C. (2023). The role of boundary conditions in scaling laws for turbulent heat transport[J]. Math. Eng. 5(1), 1-41, doi: https://doi.org/10.3934/mine.2023013