S2: Improved Parameterizations and Numerics in Climate Models
Principal investigators: Prof. Ulrich Achatz (Goethe University Frankfurt), Dr. Nils Brüggemann (Universität Hamburg), Dr. Sergey Danilov (Alfred Wegener Institute for Polar and Marine Research), Prof. Carsten Eden (Universität Hamburg), Dr. Johann Jungclaus (Institute for Meteorology Hamburg), Dr. Peter Korn (Institute for Meteorology Hamburg)
Objectives

The project aims to implement new parameterisations and numerical algorithms designed to improve the energetic consistency, and elaborated in the framework of this CRC, in the ocean components of the new generation of Earth System Models that are presently developed in Germany. It will also support the development and implementation of new atmospheric parameterisations. The project will interact with other projects of this CRC providing a framework for the synthesis of the collaborative efforts and serve, together with S1, as a metric for its success.
The AWI climate model
The model consists of the FESOM ocean model coupled to the ECHAM6.3 atmosphere model. Coupled configurations with various ocean grids are available.
- FESOM offers multi-resolution functionality
- FESOM works on arbitrary triangular meshes and allows refinements without nesting in the areas of interest
- ECHAM6-FESOM allows climate studies with a multi-scale ocean
Advanced FESOM configurations allow grids to be locally eddy resolving to simulate variability adequately where it is observed.



The ICON model system
The system consists of newly developed sub-systems for the atmosphere (ICON-a) and the ocean (ICON-o).
- ICON-a features non-hydrostatic dynamical core in grid point space.
- ICON-a implemented at the German Weather Service for regional and global weather forecasting.
- ICON-a applied at MPI-M using different physics packages at resolutions from 2.5 to 160 km.
- ICON-a LES simulations at 150m resolution in HD(CP)² project
- ICON-o based on similar grid structure using mimetic discretisation
- ICON-o applied at MPI-M at resolutions from 10 to 160 km
ICON-o and ICON-a are coupled by the YAC coupler to form the new Max Planck Earth System Model MPI-ESM-2.


Reports
Implementing new parameterizations and algorithms
A new vertical coordinate frame for our ocean model has the potential to reduce unwanted spurious mixing effects.
I’m Patrick Scholz, Post Doc at Alfred Wegener Institute and work together with Sergey Danilov at Research area S2: “Improved parameterizations and numerics in climate models”. Aim of this project part is to implement new parameterizations and algorithms to improve the energetic consistency in the ocean component of climate models. In particular I will work with the new Finite Volume Sea Ice Ocean Model (FESOM2.0) and start there to implement a new vertical coordinate frame (Arbitrary Lagrangian Eulerian, ALE), based on vertical mesh motion, that has the potential to reduce unwanted spurious mixing effects in the ocean. ALE also allows to combine different versions of vertical coordinates in a single ocean setup, which will also help to broaden the functionality of the model. Further, we will implement new parameterizations of overflows, improved numerical transport algorithms and an energetically consistent parameterization of vertical mixing.
Working with IDEMIX
We will develop a library that simulates the vertical part of IDEMIX independently from general circulation models.
I'm Hannah Kleppin, I recently finished my PhD at the University of Copenhagen under the supervision of Markus Jochum. Until the end of this year I work in the TRR181 in subproject S2 “Improved parameterizations and numerics in climate models”, together with Johann Jungclaus and Carsten Eden. The main goal of subproject S – Synthesis with climate models as metric – is to test parameterizations that are developed in the other subprojects. I will work on implementing IDEMIX – a closure for internal gravity wave mixing in the ocean - into ICON (MPI) and FESOM (AWI). We will develop a library that simulates the vertical part of IDEMIX independently from the calling GCM (in this case ICON or FESOM). In the long run other vertical mixing parameterizations will be implemented in this library, so that the effects of the different parameterizations on e.g. biases in the different GCMs can be readily tested and compared.
Publications
de la Vara, A., Cabos, W., Sein, D., Sidorenko, D., Koldunov, N., Koseki, S., Soares, P M. M., & Danilov, S. (2020). On the impact of atmospheric vs oceanic resolutions on the representation of the sea surface temperature in the South Eastern Tropical Atlantic. Clim. Dyn., doi: https://doi.org/10.1007/s00382-020-05256-9 (accepted).
Georgiou, S., Ypma, S. L., Brüggemann, N., Sayol, J. M., Pietrzak, J. D., & Katsman, C. A. (2020). Pathways of the water masses exiting the Labrador Sea: The importance of boundary-interior exchanges. Ocean Model., 101623, https://doi.org/10.1016/j.ocemod.2020.101623 .
Smolentseva, M., & Danilov, S. (2020). Comparison of several high-order advection schemes for vertex-based triangular discretization. Ocean Dyn., 70(4), 463-479, https://doi.org/10.1007/s10236-019-01337-4 .
Wang, Q., Wekerle, C., Wang, X., Danilov, S., Koldunov, N., Sein, D., ... & Jung, T. (2020). Intensification of the Atlantic Water supply to the Arctic Ocean through Fram Strait induced by Arctic sea ice decline. Geophys. Res. Lett., https://doi.org/10.1029/2019GL086682.
Scholz, P., Sidorenko, D., Gurses, O., Danilov, S., Koldunov, N., Wang, Q., Sein, D., Smolentseva, M., Rakowsky, N. & Jung, T. (2019). Assessment of the Finite VolumE Sea Ice Ocean Model (FESOM2.0), Part I: Description of selected key model elements and comparison to its predecessor version, Geosci. Model Dev., https://doi.org/10.5194/gmd-2018-329.
Sidorenko, D., Goessling, H. F., Koldunov, N. V., Scholz, P., Danilov, S., Barbi, D., Cabos, W., Gurses, O. Harig, S., Hinrichs, C., Juricke, S., Lohmann, G., Losch, M., Mu, L., Rackow, T., Rakowsky, N., Sein, D., Semmler, T., Shi, X., Stepanek, C., Streffing, J., Wang, Q., Wekerle, C., Yang, H. & Jung, T. ( 2019). Evaluation of FESOM2.0 coupled to ECHAM6.3: Pre‐industrial and HighResMIP simulations.J. Adv. Model Earth Sy., 11. doi:10.1029/2019MS001696.
Brüggemann, N., & Katsman, C. A. (2019). Dynamics of downwelling in an eddying marginal sea: contrasting the Eulerian and the isopycnal perspective. J. Phys. Oceanogr., https://doi.org/10.1175/JPO-D-19-0090.1.
Koldunov, N. V., Aizinger, V., Rakowsky, N., Scholz, P., Sidorenko, D., Danilov, S. & Jung, T. (2019). Scalability and some optimization of the Finite-volumE Sea ice-Ocean Model, Version 2.0 (FESOM2), Geosci. Model Dev., 12, 3991–4012, https://doi.org/10.5194/gmd-12-3991-2019.
Gutjahr, O., Putrasahan, D., Lohmann, K., Jungclaus, J. H., von Storch, J. S., Brüggemann, N., Haak, H., & Stössel, A. (2019). Max Planck Institute Earth System Model (MPI-ESM1. 2) for High-Resolution Model Intercomparison Project (HighResMIP). Geophys. Mod. Develop., 12, 3241-3281, doi.org/10.5194/gmd-12-3241-2019.
Koldunov, N., S. Danilov, D. Sidorenko, N. Hutter, M. Losch, H. Goessling, N. Rakowsky, P. Scholz, D. Sein, Q. Wang and T. Jung (2019). Fast EVP solutions in a high-resolution sea ice model. Adv. Model. Earth Syst., 11, doi.org/10.1029/2018MS001485
Georgiou, S., van der Boog, C. G., Brüggemann, N., Ypma, S. L., Pietrzak, J. D., & Katsman, C. A. (2019). On the interplay between downwelling, deep convection and mesoscale eddies in the Labrador Sea. Ocean Model., 135, 56-70, https://doi.org/10.1016/j.ocemod.2019.02.004 .
Pollmann, F., J. Nycander, C. Eden and D. Olbers (2019). Resolving the horizontal direction of internal tide generation. J. Fluid Mech., Vol. 864, pp. 381-407, doi: https://doi.org/10.1017/jfm.2019.9.
Jingwei, Koldunov, N., Remedio, Sein, Rechid, Zhi, Jiang, Xu, Zhu, Fraedrich, Jacob. Downstream Effect of Hengduan Mountains on East China in the REMO Regional Climate Model. Theor. Appl. Climatol.,135: 1641, doi: doi.org/10.1007/s00704-018-2721-0.
Olbers, D., Eden, C., Becker, E., Pollmann, F., & Jungclaus, J. (2019). The IDEMIX Model: Parameterization of Internal Gravity Waves for Circulation Models of Ocean and Atmosphere. In Energy Transfers in Atmosphere and Ocean (pp. 87-125). Springer, Cham., doi: https://doi.org/10.1007/978-3-030-05704-6_3.
Wang, Q., Wekerle, C., Danilov, S., Sidorenko, D., Koldunov, N., Sein, D., ... & Jung, T. (2018). Recent sea ice decline did not significantly increase the total liquid freshwater content of the Arctic Ocean. J. Climate. doi: https://doi.org/10.1175/JCLI-D-18-0237.1.
Sidorenko, D., Koldunov, N., Wang, Q., Danilov, S., Goessling, H. F., Gurses, O., ... & Jung, T. (2018). Influence of a salt plume parameterization in a coupled climate model. J. Adv. Model Earth Sy., doi: https://doi.org/10.1029/2018MS001291.
Sein, D. V., Koldunov, N. V., Danilov, S., Sidorenko, D., Wekerle, C., Cabos, W., ... & Jung, T. (2018). The relative influence of atmospheric and oceanic model resolution on the circulation of the North Atlantic Ocean in a coupled climate model.J. Adv. Model. Earth Sy., doi: https://doi.org/10.1029/2018MS001327.
Chouksey, M., Eden, C., & Brüggemann, N. (2018). Internal gravity wave emission in different dynamical regimes. J. Phys. Oceanogr., 48(8), 1709-1730, doi: https://doi.org/10.1175/JPO-D-17-0158.1.