Area T: Turbulence and boundary layer

In Area T oceanographers and meteorologists work on small-scale turbulent and boundary layer processes in ocean and atmosphere. The term boundary layer describes the areas at the top or bottom in the ocean or atmosphere. The focus in Area T is on the boundary layer processes at the ocean's surface and bottom boundaries.

Combining experiments with simulations

Scientists in Area T use experiments as well as simulations to investigate the ocean and atmosphere. High-resolution measurements are used e.g. to construct horizontal and vertical wavenumber power spectra or to construct energetically consistent parameterizations of energy transfers. Furthermore, observations with high-resolution data and simulations help assessing the mixing processes active in a descending gravity plume.

Specific research questions in Area T are:

  • How to quantify and parameterise stratified turbulence in the atmosphere?
  • What are processes, energy transfers and interactions between small-scale turbulence, gravity waves and eddies in the surface and bottom boundary layers of the ocean?
  • Chrysagi, E., Umlauf, L., Holtermann, P., Klingbeil, K., & Burchard, H. (2021). High-resolution3414 simulations of submesoscale processes in the Baltic Sea: The role of storm events. J. Geophys. Res. - Oceans 126(3), e2020JC01641, doi: https://doi.org/10.1029/2020JC016411

  • Chrysagi, E., Umlauf, L., Holtermann, P., Klingbeil, K.Burchard, H. (2021). High‐resolution simulations of submesoscale processes in the Baltic Sea: The role of storm events. J. Geophys. Res.- Oceans 126(3), doi: https://doi.org/10.1029/2020JC016411.

  • Strelnikova, I., Almowafy, M., Baumgarten, G. et al. (2021). Seasonal Cycle of Gravity Wave Potential Energy Densities from Lidar and Satellite Observations at 54° and 69°N. J. Atmos. Sci. 78, 1359-1386, doi: https://doi.org/10.1175/JAS-D-20-0247.1

  • Bjørnestad, M., Buckley, M., Kalisch, H., Streßer, M., Horstmann, J., Frøysa, H.G., Ige, O.E., Cysewski, M. & Carrasco-Alvarez, R. (2021). Lagrangian measurements of orbital velocities in the surf zone. Geophys. Res. Lett. 48(21), e2021GL095722, doi: https://doi.org/10.1029/2021GL095722

  • Funke, C.S., Buckley, M.P., Schultze, L.K., Veron, F., Timmermans, M.E., & Carpenter, J.R. (2021). Pressure fields in the airflow over wind-generated surface waves. J. Phys. Oceanogr., doi: 10.1175/JPO-D-20-0311.1.

  • Merckelbach, L.M. & Carpenter, J.R. (2021). Ocean Glider Flight in the Presence of Surface Waves. J. Atmos. Ocean Tech., 38(7), 1265-1275, doi: 10.1175/JTECH-D-20-0206.1.

  • Carpenter, J.R., Liang, Y., Timmermans, M.-L. & Heifetz, E. (2022). Physical mechanisms of the linear stabilization of convection by rotation. Phys. Rev. Fluids 7(8), 083501, doi: https://doi.org/10.1103/PhysRevFluids.7.083501.

  • Carpenter, J.R., Buckley, M.P., & Veron, F. (2022). Evidence of the critical layer mechanism in growing wind waves. J. Fluid Mech. 94(26), doi: https://doi.org/10.1017/jfm.2022.714.

  • Llanillo, P. J., Kanzow, T., Janout, M. A., & Rohardt, G. (2023). The deep-water plume in the northwestern Weddell Sea, Antarctica: Mean state, seasonal cycle and interannual variability influenced by climate modes. J. Geophys. Res. 128(2), e2022JC019375, doi: https://doi.org/10.1029/2022JC019375

  • Olbers, D., Pollmann, F., Patel, A. & Eden, C. (2023). A model of energy and spectral shape for the internal gravity wave field in the deep-sea – The parametric IDEMIX model. J. Phys.Oceanogr. 53(5), doi: https://doi.org/10.1175/JPO-D-22-0147.1.